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Welcome to Neural Monkey’s documentation!

Neural Monkey is an open-source toolkit for sequence learning using Tensorflow.
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Installation

Before you start, make sure that you already have installed Python 3.5, pip
and git.

Create and activate a virtual environment to install the package into:

$ python3 -m venv nm
$ source nm/bin/activate
# after this, your prompt should change





Then clone Neural Monkey from GitHub and switch to its root directory:

(nm)$ git clone https://github.com/ufal/neuralmonkey
(nm)$ cd neuralmonkey





Run pip to install all requirements. For the CPU version install
dependencies by this command:

(nm)$ pip install --upgrade -r requirements.txt





For the GPU version install dependencies try this command:

(nm)$ pip install --upgrade -r requirements-gpu.txt





If you are using the GPU version, make sure that the LD_LIBRARY_PATH
environment variable points to lib and lib64 directories of your CUDA
and CuDNN installations. Similarly, your PATH variable should point to the
bin subdirectory of the CUDA installation directory.

You made it! Neural Monkey is now installed!


Note for Ubuntu 14.04 users

If you get Segmentation fault errors at the very end of the training process,
you can either ignore it, or follow the steps outlined in this
document.







          

      

      

    

  

    
      
          
            
  
Package Overview

This overview should provide you with the basic insight on how Neural Monkey
conceptualizes the problem of sequence-to-sequence learning and how the data
flow during training and running models looks like.


Loading and Processing Datasets

We call a dataset a collection of named data series. By a series we mean a
list of data items of the same type representing one type of input or desired
output of a model. In the simple case of machine translation, there are two
series: a list of source-language sentences and a list of target-language
sentences.

The following scheme captures how a dataset is created from input
data.

[image: _images/dataset_creation.svg]The dataset is created in the following steps:


	An input file is read using a reader. Reader can e.g., load a file
containing paths to JPEG images and load them as numpy arrays, or
read a tokenized text as a list of lists (sentences) of string tokens.

	Series created by the readers can be preprocessed by some series-level
preprocessors. An example of such preprocessing is byte-pair encoding which
loads a list of merges and segments the text accordingly.

	The final step before creating a dataset is applying dataset-level
preprocessors which can take more series and output a new series.



Currently there are two implementations of a dataset. An in-memory dataset
which stores all data in the memory and a lazy dataset which gradually reads
the input files step by step and only stores the batches necessary for the
computation in the memory.




Training and Running a Model

This section describes the training and running workflow. The main concepts and
their interconnection can be seen in the following scheme.

[image: _images/model_workflow.svg]The dataset series can be used to create a vocabulary. A vocabulary
represents an indexed set of tokens and provides functionality for converting
lists of tokenized sentences into matrices of token indices and vice
versa. Vocabularies are used by encoders and decoders for feeding the provided
series into the neural network.

The model itself is defined by encoders and decoders. Most of the
TensorFlow code is in the encoders and decoders. Encoders are parts of the
model which take some input and compute a representation of it. Decoders are
model parts that produce some outputs. Our definition of encoders and decoders
is more general than in the classical sequence-to-sequence learning. An encoder
can be for example a convolutional network processing an image. The RNN decoder
is for
us only a special type of decoder, it can be also a sequence labeler or a
simple multilayer-perceptron classifier.

Decoders are executed using so-called runners. Different runners
represent different ways of running the model. We might want to get a single
best estimation, get an n-best list or a sample from the model. We might
want to use an RNN decoder to get the decoded sequences or we might be
interested in the word alignment obtained by its attention model. This is all
done by employing different runners over the decoders. The outputs of the
runners can be subject of further post-processing.

Additionally to runners, each training experiment has to have its trainer.  A
trainer is a special case of a runner that actually modifies the parameters of
the model. It collects the objective functions and uses them in an optimizer.

Neural Monkey manages TensorFlow sessions using an object called TensorFlow
manager. Its basic capability is to execute runners on provided datasets.







          

      

      

    

  

    
      
          
            
  
Post-Editing Task Tutorial

This tutorial will guide you through designing your first experiment in Neural
Monkey.

Before we get started with the tutorial, please check that you have the Neural
Monkey package properly
installed and working.


Part I. - The Task

This section gives an overall description of the task we will try to solve in
this tutorial. To make things more interesting than plain machine translation,
let’s try automatic post-editing task (APE, rhyming well with Neural Monkey).

In short, automatic post-editing is a task, in which we have a source language
sentence (let’s call it f, as grown-ups do), a machine-translated sentence
of f (I actually don’t know what grown-ups call this, so let’s call this
e'), and we are expected to generate another sentence in the same language
as e' but cleaned of all the errors that the machine translation system have
made (let’s call this cleaned sentence e). Consider this small example:


	Source sentence f:

	Bärbel hat eine Katze.

	Machine-translated sentence e':

	Bärbel has a dog.

	Corrected translation e:

	Bärbel has a cat.



In the example, the machine translation system wrongly translated the German
word “Katze” as the English word “dog”. It is up to the post-editing system to
fix this error.

In theory (and in practice), we regard the machine translation task as searching
for a target sentence e* that has the highest probability of being the
translation given the source sentence f. You can put it to a formula:

e* = argmax_e p(e|f)





In the post-editing task, the formula is slightly different:

e* = argmax_e p(e|f, e')





If you think about this a little, there are two ways one can look at this
task. One is that we are translating the machine-translated sentence from a kind
of synthetic language into a proper one, with additional knowledge what the
source sentence was. The second view regards this as an ordinary machine
translation task, with a little help from another MT system.

In our tutorial, we will assume the MT system used to produce the sentence
e' was good enough. We thus generally trust it and expect only to make
small edits to the
translated sentence in order to make it fully correct. This means that we don’t need
to train a whole new MT system that would translate the source sentences from
scratch. Instead, we will build a system that will tell us how to edit the
machine translated sentence e'.




Part II. - The Edit Operations

How can an automatic system tell us how to edit a sentence? Here’s one way to do
it: We will design a set of edit operations and train the system to generate a
sequence of these operations. If we consider a sequence of edit operations a
function R (as in rewrite), which transforms one sequence to another, we
can adapt the formulas above to suit our needs more:

R* = argmax_R p(R(e')|f, e')
e* = R*(e')





So we are searching for the best edit function R* that, once applied
to e', will give us the corrected output e*.
Another question is what the class of all possible edit functions
should look like, for now we simply limit them to functions that can be
defined as sequences of edit operations.

The edit function R processes the input sequence token-by-token in left-to-right
direction. It has a pointer to the input sequence, which starts by pointing to
the first word of the sequence.

We design three types of edit operations as follows:


	KEEP - this operation copies the current word to the output and moves the
pointer to the next token of the input,

	DELETE - this operation does not emit anything to the output and moves the pointer
to the next token of the input,

	INSERT - this operation puts a word on the output, leaving the pointer to the
input intact.



The edit function applies all its operations to the input sentence. We handle malformed
edit sequences simply: if the pointer reaches the end of the input seqence, operations KEEP
and DELETE do nothing. If the sequence of edits ends before the end of the input
sentence is reached, we apply as many additional KEEP operations as needed to reach
the end of the input sequence.

Let’s see another example:

Bärbel  has   a     dog          .
KEEP    KEEP  KEEP  DELETE  cat  KEEP





The word “cat” on the second line is an INSERT operation parameterized by the
word “cat”. If we apply all the edit operations to the input (i.e. keep the
words “Bärbel”, “has”, “a”, and ”.”, delete the word “dog” and put the word
“cat” in its place), we get the corrected target sentence.




Part III. - The Data

We are going to use the data for WMT 16 shared APE task. You can get them at the
WMT 16 website [http://www.statmt.org/wmt16/ape-task.html] or directly at the
Lindat repository [http://hdl.handle.net/11372/LRT-1632]. There are three
files in the repository:


	TrainDev.zip - contains training and development data set

	Test.zip - contains source and translated test data

	test_pe.zip - contains the post-edited test data



Now - before we start, let’s create our experiment directory, in which we will
place all our work. We shall call it for example exp-nm-ape (feel free to
choose another weird string).

Extract all the files into the exp-nm-ape/data directory. Rename the files and
directories so you get this directory structure:

exp-nm-ape
|
\== data
    |
    |== train
    |   |
    |   |== train.src
    |   |== train.mt
    |   \== train.pe
    |
    |== dev
    |   |
    |   |== dev.src
    |   |== dev.mt
    |   \== dev.pe
    |
    \== test
        |
        |== test.src
        |== test.mt
        \== test.pe





The data is already tokenized so we don’t need to run any preprocessing
tools. The format of the data is plain text with one sentence per line.  There
are 12k training triplets of sentences, 1k development triplets and 2k of
evaluation triplets.


Preprocessing of the Data

The next phase is to prepare the post editing sequences that we should learn
during training. We apply the Levenshtein algorithm to find the shortest edit
path from the translated sentence to the post-edited sentence. As a little
coding excercise, you can implement your own script that does the job, or you
may use our preprocessing script from the Neural Monkey package. For this, in the
neuralmonkey root directory, run:

scripts/postedit_prepare_data.py \
  --translated-sentences=exp-nm-ape/data/train/train.mt \
  --target-sentences=exp-nm-ape/data/train/train.pe \
      > exp-nm-ape/data/train/train.edits





And the same for the development data.

NOTE: You may have to change the path to the exp-nm-ape directory if it is not
located inside the repository root directory.

NOTE 2: There is a hidden option of the preparation script
(--target-german=True) which turns on some steps
tailored for better processing of German text. In this tutorial, we are not
going to use it.

If you look at the preprocessed files, you will see that the KEEP and DELETE
operations are represented with special tokens while the INSERT operations are
represented simply with the word they insert.

Congratulations! Now, you should have train.edits, dev.edits and test.edits
files all in their respective data directories. We can now move to work with
Neural Monkey configurations!






Part IV. - The Model Configuration

In Neural Monkey, all information about a model and its training is stored in
configuration files. The syntax of these files is a plain INI syntax (more
specifically, the one which gets processed by Python’s ConfigParser). The
configuration file is structured into a set of sections, each describing a part
of the training. In this section, we will go through all of them and write our
configuration file needed for the training of the post-editing task.

First of all, create a file called post-edit.ini and put it inside the
exp-nm-ape directory. Put all the snippets that we will describe in the
following paragraphs into the file.


1 - Datasets

For training, we prepare two datasets. The first dataset will serve for the
training, the second one for validation. In Neural Monkey, each dataset contains
a number of so called data series. In our case, we will call the data series
source, translated, and edits. Each of those series will contain the
respective set of sentences.

It is assumed that all series within a given dataset have the same number of
elements (i.e. sentences in our case).

The configuration of the datasets looks like this:

[train_dataset]
class=dataset.load_dataset_from_files
s_source="exp-nm-ape/data/train/train.src"
s_translated="exp-nm-ape/data/train/train.mt"
s_edits="exp-nm-ape/data/train/train.edits"

[val_dataset]
class=dataset.load_dataset_from_files
s_source="exp-nm-ape/data/dev/dev.src"
s_translated="exp-nm-ape/data/dev/dev.mt"
s_edits="exp-nm-ape/data/dev/dev.edits"





Note that series names (source, translated, and edits) are arbitrary and
defined by their first mention. The s_ prefix stands for “series” and
is used only here in the dataset sections, not later when the series are referred to.

These two INI sections represent two calls to function
neuralmonkey.config.dataset_from_files, with the series file paths as keyword
arguments. The function serves as a constructor and builds an object for every call.
So at the end, we will have two objects representing the two datasets.




2 - Vocabularies

Each encoder and decoder which deals with language data operates with some kind
of vocabulary. In our case, the vocabulary is just a list of all unique words in
the training data. Note that apart the special <keep> and <delete>
tokens, the vocabularies for the translated and edits series are from the
same language. We can save some memory and perhaps improve quality of the target
language embeddings by share vocabularies for these datasets. Therefore, we need
to create only two vocabulary objects:

[source_vocabulary]
class=vocabulary.from_dataset
datasets=[<train_dataset>]
series_ids=["source"]
max_size=50000

[target_vocabulary]
class=vocabulary.from_dataset
datasets=[<train_dataset>]
series_ids=["edits", "translated"]
max_size=50000





The first vocabulary object (called source_vocabulary) represents the
(English) vocabulary used for this task. The 50,000 is the maximum size of the
vocabulary. If the actual vocabulary of the data was bigger, the rare words
would be replaced by the <unk> token (hardcoded in Neural Monkey, not part
of the 50,000 items), which stands for unknown words.  In
our case, however, the vocabularies of the datasets are much smaller so we won’t
lose any words.

Both vocabularies are created out of the training dataset, as specified by the
line datasets=[<train_dataset>] (more datasets could be given in the list). This
means that if there are any unseen words in the development or test data, our
model will treat them as unknown words.

We know that the languages in the translated series and edits are
the same (except for the KEEP and DELETE tokens in the edits), so we create a
unified vocabulary for them. This is achieved by specifying
series_ids=[edits, translated]. The one-hot encodings (or more precisely,
indices to the vocabulary) will be identical for words in translated and
edits.




3 - Encoders

Our network will have two inputs. Therefore, we must design two separate
encoders. The first encoder will process source sentences, and the second will
process translated sentences, i.e. the candidate translations that we are
expected to post-edit. This is the configuration of the encoder for
the source sentences:

[src_encoder]
class=encoders.sentence_encoder.SentenceEncoder
rnn_size=300
max_input_len=50
embedding_size=300
dropout_keep_prob=0.8
attention_type=decoding_function.Attention
data_id="source"
name="src_encoder"
vocabulary=<source_vocabulary>





This configuration initializes a new instance of sentence encoder with the
hidden state size set to 300 and the maximum input length set to 50. (Longer
sentences are trimmed.) The sentence encoder looks up the words in a word
embedding matrix. The size of the embedding vector used for each word from the
source vocabulary is set to 300. The source data series is fed to this
encoder. 20% of the weights is dropped out during training from the word
embeddings and from the attention vectors computed over the hidden states of
this encoder. Note the name attribute must be set in each encoder and
decoder in order to prevent collisions of the names of Tensorflow graph nodes.

The configuration of the second encoder follows:

[trans_encoder]
class=encoders.sentence_encoder.SentenceEncoder
rnn_size=300
max_input_len=50
embedding_size=300
dropout_keep_prob=0.8
attention_type=decoding_function.Attention
data_id="translated"
name="trans_encoder"
vocabulary=<target_vocabulary>





This config creates a second encoder for the translated data series. The
setting is the same as for the first encoder, except for the different
vocabulary and name.




4 - Decoder

Now, we configure perhaps the most important object of the training - the
decoder. Without further ado, here it goes:

[decoder]
class=decoders.decoder.Decoder
name="decoder"
encoders=[<trans_encoder>, <src_encoder>]
rnn_size=300
max_output_len=50
embeddings_encoder=<trans_encoder>
dropout_keep_prob=0.8
use_attention=True
data_id="edits"
vocabulary=<target_vocabulary>





As in the case of encoders, the decoder needs its RNN and embedding size
settings, maximum output length, dropout parameter, and vocabulary settings.

The outputs of the individual encoders are by default simply concatenated
and projected to the decoder hidden state (of rnn_size). Internally,
the code is ready to support arbitrary mappings by adding one more parameter
here: encoder_projection.

Note that you may set rnn_size to None. Neural Monkey will then directly
use the concatenation of encoder states without any mapping. This is particularly
useful when you have just one encoder as in MT.

The line embeddings_encoder=<trans_encoder> means that the embeddings (including
embedding size) are shared with trans_encoder.

The loss of the decoder is computed
against the edits data series of whatever dataset the decoder will be
applied to.




5 - Runner and Trainer

As their names suggest, runners and trainers are used for running and training
models. The trainer object provides the optimization operation to the graph. In
the case of the cross entropy trainer (used in our tutorial), the default optimizer
is Adam and it is run against the decoder’s loss, with added L2
regularization (controlled by the l2_weight parameter of the
trainer). The runner is used to process a dataset by the model and return the
decoded sentences, and (if possible) decoder losses.

We define these two objects like this:

[trainer]
class=trainers.cross_entropy_trainer.CrossEntropyTrainer
decoders=[<decoder>]
l2_weight=1.0e-8

[runner]
class=runners.runner.GreedyRunner
decoder=<decoder>
output_series="greedy_edits"





Note that a runner can only have one decoder, but during training you can train
several decoders, all contributing to the loss function.

The purpose of the trainer is to optimize the model, so we are not interested in
the actual outputs it produces, only the loss compared to the reference outputs
(and the loss is calculated by the given decoder).

The purpose of the runner is to get the actual outputs and for further use, they
are collected to a new series called greedy_edits (see the line
output_series=) of whatever dataset the runner will be applied to.




6 - Evaluation Metrics

During validation, the whole validation dataset gets processed by the models and
the decoded sentences are evaluated against a reference to provide the user with
the state of the training. For this, we need to specify evaluator objects which
will be used to score the outputted sentences. In our case, we will use BLEU and
TER:

[bleu]
class=evaluators.bleu.BLEUEvaluator
name="BLEU-4"








7 - TensorFlow Manager

In order to handle global variables such as how many CPU cores
TensorFlow should use, you need to specify a “TensorFlow manager”:

[tf_manager]
class=tf_manager.TensorFlowManager
num_threads=4
num_sessions=1
minimize_metric=True
save_n_best=3








8 - Main Configuration Section

Almost there! The last part of the configuration puts all the pieces
together. It is called main and specifies the rest of the training
parameters:

[main]
name="post editing"
output="exp-nm-ape/training"
runners=[<runner>]
tf_manager=<tf_manager>
trainer=<trainer>
train_dataset=<train_dataset>
val_dataset=<val_dataset>
evaluation=[("greedy_edits", "edits", <bleu>), ("greedy_edits", "edits", evaluators.ter.TER)]
batch_size=128
runners_batch_size=256
epochs=100
validation_period=1000
logging_period=20





The output parameter specifies the directory, in which all the files generated by
the training (used for replicability of the experiment, logging, and saving best
models variables) are stored.  It is also worth noting, that if the output
directory exists, the training is not run, unless the line
overwrite_output_dir=True is also included here.

The runners, tf_manager, trainer, train_dataset and val_dataset options are self-explanatory.

The parameter evaluation takes list of tuples, where each tuple contains:
- the name of output series (as produced by some runner), greedy_edits here,
- the name of the reference series of the dataset, edits here,
- the reference to the evaluation algorithm, <bleu> and evaluators.ter.TER in the two tuples here.

The batch_size parameter controls how many sentences will be in one training
mini-batch. When the model does not fit into GPU memory, it might be a good idea to
start reducing this number before anything else. The larger the batch size, however, the
sooner the training should converge to the optimum.

Runners are less memory-demanding, so runners_batch_size can be set higher than batch_size.

The epochs parameter specifies
the number of passes through the training data that the training loop should
do. There is no early stopping mechanism in Neural Monkey yet, the training can be resumed after the
end, however. The training can be safely ctrl+C’ed in any time: Neural Monkey preserves the
last save_n_best best model variables saved on the disk.

The validation and logging periods specify how often to measure the model’s
performance on the training batch (logging_period) or on validation data
(validation_period). Note that both logging and validation involve running the runners
over the current batch or the validation data, resp. If this happens too often,
the time needed to train the model can significantly grow.

At each validation (and logging), the output
is scored using the specified evaluation metrics. The last of the evaluation
metrics (TER in our case) is used to keep track of the model performance over
time. Whenever the score on validation data is better than any of the save_n_best
(3 in our case) previously saved models, the model is saved, discaring
unneccessary lower scoring models.






Part V. - Running an Experiment

Now that we have prepared the data and the experiment INI file, we can run the
training. If your Neural Monkey installation is OK, you can just run this
command from the root directory of the Neural Monkey repository:

bin/neuralmonkey-train exp-nm-ape/post-edit.ini





You should see the training program reporting the parsing of the configuration
file, initializing the model, and eventually the training process. If everything
goes well, the training should run for 100 epochs. You should see a new line
with the status of the model’s performance on the current batch every few
seconds, and there should be a validation report printed every few minutes.

As given in the main.output config line, the Neural Monkey creates the directory
experiments/training with these files:


	git_commit - the Git hash of the current Neural Monkey revision.

	git_diff - the diff between the clean checkout and the working copy.

	experiment.ini - the INI file used for running the training (a simple copy of the file NM was started with).

	experiment.log - the output log of the training script.

	checkpoint - file created by Tensorflow, keeps track of saved variables.

	events.out.tfevents.<TIME>.<HOST> - file created by Tensorflow, keeps the
summaries for TensorBoard visualisation

	variables.data[.<N>] - a set of files with N best saved models.

	variables.data.best - a symbolic link that points to the variable file
with the best model.






Part VI. - Evaluation of the Trained Model

If you have reached this point, you have nearly everything this tutorial
offers. The last step of this tutorial is to take the trained model and to
apply it to a previously unseen dataset. For this you will need two additional
configuration files. But fear not - it’s not going to be that difficult. The
first configuration file is the specification of the model. We have this from
Part III and a small optional change is needed. The second
configuration file tells the run script which datasets to process.

The optional change of the model INI file prevents the training dataset from
loading. This is a flaw in the present design and it is planned to change. The
procedure is simple:


	Copy the file post-edit.ini into e.g. post-edit.test.ini

	Open the post-edit.test.ini file and remove the train_dataset and
val_dataset sections, as well as the train_dataset and
val_dataset configuration from the [main] section.



Now we have to make another file specifying the testing dataset
configuration. We will call this file post-edit_run.ini:

[main]
test_datasets=[<eval_data>]

[eval_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-ape/data/test/test.src"
s_translated="exp-nm-ape/data/test/test.mt"
s_greedy_edits_out="exp-nm-ape/test_output.edits"





The dataset specifies the two input series s_source and s_translated (the
candidate MT output output to be post-edited) as in the training. The series
s_edits (containing reference edits) is not present in the evaluation
dataset, because we do not want to use the reference edits to
compute loss at this point. Usually, we don’t even know the correct output at runtime.

Instead, we introduce the output series s_greedy_edits_out (the prefix s_ and
the suffix _out are hardcoded in Neural Monkey and the series name in between
has to match the name of the series produced by the runner).

The line s_greedy_edits_out= specifies the file where the output should be saved.
(You may want to alter the path to the exp-nm-ape directory if it is not located inside
the Neural Monkey package root dir.)

We have all that we need to run the trained model on the evaluation
dataset. From the root directory of the Neural Monkey repository, run:

bin/neuralmonkey-run exp-nm-ape/post-edit.test.ini exp-nm-ape/post-edit_run.ini





At the end, you should see a new file exp-nm-ape/test_output.edits.
As you notice, the contents of this file are the
sequences of edit operations, which if applied to the machine translated
sentences, generate the output that we want. The final step is to call the
provided post-processing script. Again, feel free to write your own as a simple
exercise:

scripts/postedit_reconstruct_data.py \
  --edits=exp-nm-ape/test_output.edits \
  --translated-sentences=exp-nm-ape/data/test/test.mt \
    > test_output.pe





Now, you can run the official tools (like mteval or the tercom software
available on the WMT 16 website [http://www.statmt.org/wmt16/ape-task.html])
to measure the score of test_output.pe on the data/test/test.pe
reference evaluation dataset.




Part VII. - Conclusions

This tutorial gave you the basic overview of how to design your experiments using
Neural Monkey. The sample experiment was the task of automatic
post-editing. We got the data from the WMT 16 APE shared task and pre-processed
them to fit our needs. We have written the configuration file and run the
training. At the end, we evaluated the model on the test dataset.

If you want to learn more, the next step is perhaps to browse the examples
directory in Neural Monkey repository and see some further possible setups. If you are
planning to just design an experiment using existing modules, you can start by
editing one of those examples as well.

If you want to dig in the code, you can browse the repository [https://github.com/ufal/neuralmonkey] Please feel free to fork the repository
and to send us pull requests. The API documentation [http://neural-monkey.readthedocs.io/] is currently under construction, but it
already contains a little information about Neural Monkey objects and their
configuraiton options.

Have fun!







          

      

      

    

  

    
      
          
            
  
Machine Translation Tutorial

This tutorial will guide you through designing Machnine Translation
experiments in Neural Monkey. We assumes that you already read
the post-editing tutorial.

The goal of the translation task is to translate sentences from one language
into
another. For this tutorial we use data from the WMT 16 IT-domain
translation shared task on English-to-Czech direction.

WMT [http://www.statmt.org/wmt16/]
is an annual machine translation conference where academic
groups compete in translating different datasets over various language pairs.


Part I. - The Data

We are going to use the data for the WMT 16 IT-domain translation shared task.
You can get them at the WMT IT Translation Shared Task webpage [http://www.statmt.org/wmt16/it-translation-task.html] and there download
Batch1 and Batch2 answers and Batch3 as a testing set. Or directly here [http://ufallab.ms.mff.cuni.cz/~popel/batch1and2.zip] and
testset [http://ufallab.ms.mff.cuni.cz/~popel/batch3.zip].

Note: In this tutorial we are using only small dataset as an example, which is
not big enough for real-life machine translation training.

We find several files for different languages in the downloaded archive.
From which we use only the following files as our training, validation and
test set:

1. ``Batch1a_cs.txt and Batch1a_en.txt`` as our Training set
2. ``Batch2a_cs.txt and Batch2a_en.txt`` as a Validation set
3. ``Batch3a_en.txt`` as a Test set





Now - before we start, let’s make our experiment directory, in which we place
all our work. Let’s call it exp-nm-mt.

First extract all the downloaded files, then make gzip files from individual
files and put arrange them into the following directory structure:

exp-nm-mt
|
\== data
    |
    |== train
    |   |
    |   |== Batch1a_en.txt.gz
    |   \== Batch1a_cs.txt.gz
    |
    |== dev
    |   |
    |   |== Batch2a_en.txt.gz
    |   \== Batch2a_cs.txt.gz
    |
    \== test
        |
        \== Batch3a_en.txt.gz






	The gzipping is not necessary, if you put the dataset there in plaintext, it

	will work the same way. Neural Monkey recognizes gzipped files by their MIME



type and chooses the correct way to open them.

TODO The dataset is not tokenized and need to be preprocessed.


Byte Pair Encoding

Neural machine translation (NMT) models typically operate with a fixed
vocabulary, but translation is an open-vocabulary problem.
Byte pair encoding (BPE) enables NMT model translation on open-vocabulary by
encoding rare and unknown words as sequences of subword units.
This is based on an intuition that various word classes are translatable via
smaller units than words. More information in the paper
https://arxiv.org/abs/1508.07909 BPE creates a list of merges that are used
for splitting out-of-vocabulary words. Example of such splitting:

basketball => basket@@ ball





Postprocessing can be manually done by:

sed "s/@@ //g"





but Neural Monkey manages it for you.




BPE Generation

In order to use BPE, you must first generate merge_file, over all data. This
file is generated on both source and target dataset.
You can generate it by running following script:

neuralmonkey/lib/subword_nmt/learn_bpe.py -s 50000 < DATA > merge_file.bpe





With the data from this tutorial it would be the following command:

paste Batch1a_en.txt Batch1a_cs.txt \
| neuralmonkey/lib/subword_nmt/learn_bpe.py -s 8000 \
> exp-nm-mt/data/merge_file.bpe





You can change number of merges, this number is equivalent to the size of the
vocabulary. Do not forget that as an input is the file containing both source
and target sides.






Part II. - The Model Configuration

In this section, we create the configuration file
translation.ini needed for the machine translation training.
We mention only the differences from the main post-editing tutorial.


1 - Datasets


	For training, we prepare two datasets. Since we are using BPE, we need to

	define the preprocessor. The configuration of the datasets looks like this:



[train_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-mt/data/train/Batch1a_en.txt.gz"
s_target="exp-nm-mt/data/train/Batch1a_cs.txt.gz"
preprocessors=[("source", "source_bpe", <bpe_preprocess>), ("target", "target_bpe", <bpe_preprocess>)]

[val_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-mt/data/dev/Batch2a_en.txt.gz"
s_target="exp-nm-mt/data/dev/Batch2a_cs.txt.gz"
preprocessors=[("source", "source_bpe", <bpe_preprocess>), ("target", "target_bpe", <bpe_preprocess>)]








2 - Preprocessor and Postprocessor

We need to tell the Neural Monkey how it should handle preprocessing and
postprocessing due to the BPE:

[bpe_preprocess]
class=processors.bpe.BPEPreprocessor
merge_file="exp-nm-mt/data/merge_file.bpe"

[bpe_postprocess]
class=processors.bpe.BPEPostprocessor








3 - Vocabularies

For both encoder and decoder we use shared vocabulary created from BPE
merges:

[shared_vocabulary]
class=vocabulary.from_bpe
path="exp-nm-mt/data/merge_file.bpe"








4 - Encoder and Decoder

The encoder and decored are similar to those from
the post-editing tutorial:

[encoder]
class=encoders.sentence_encoder.SentenceEncoder
name="sentence_encoder"
rnn_size=300
max_input_len=50
embedding_size=300
dropout_keep_prob=0.8
attention_type=decoding_function.Attention
data_id="source_bpe"
vocabulary=<shared_vocabulary>

[decoder]
class=decoders.decoder.Decoder
name="decoder"
encoders=[<encoder>]
rnn_size=256
embedding_size=300
dropout_keep_prob=0.8
use_attention=True
data_id="target_bpe"
vocabulary=<shared_vocabulary>
max_output_len=50





You can notice that both encoder and decoder uses as input data id the data
preprocessed by <bpe_preprocess>.




5 - Training Sections

The following sections are described in more detail in
the post-editing tutorial:

[trainer]
class=trainers.cross_entropy_trainer.CrossEntropyTrainer
decoders=[<decoder>]
l2_weight=1.0e-8

[runner]
class=runners.runner.GreedyRunner
decoder=<decoder>
output_series="series_named_greedy"
postprocess=<bpe_postprocess>

[bleu]
class=evaluators.bleu.BLEUEvaluator
name="BLEU-4"

[tf_manager]
class=tf_manager.TensorFlowManager
num_threads=4
num_sessions=1
minimize_metric=False
save_n_best=3





As for the main configuration section do not forget to add BPE postprocessing:

[main]
name="machine translation"
output="exp-nm-mt/out-example-translation"
runners=[<runner>]
tf_manager=<tf_manager>
trainer=<trainer>
train_dataset=<train_data>
val_dataset=<val_data>
evaluation=[("series_named_greedy", "target", <bleu>), ("series_named_greedy", "target", evaluators.ter.TER)]
batch_size=80
runners_batch_size=256
epochs=10
validation_period=5000
logging_period=80










Part III. - Running and Evaluation of the Experiment

The training can be run as simply as:

bin/neuralmonkey-train exp-nm-mt/translation.ini





As for the evaluation, you need to create translation_run.ini:

[main]
test_datasets=[<eval_data>]

[bpe_preprocess]
class=processors.bpe.BPEPreprocessor
merge_file="exp-nm-mt/data/merge_file.bpe"

[eval_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-mt/data/test/Batch3a_en.txt.gz"
s_series_named_greedy_out="exp-nm-mt/out-example-translation/evaluation.txt.out"
preprocessors=[("source", "source_bpe", <bpe_preprocess>)]





and run:

bin/neuralmonkey-run exp-nm-mt/translation.ini exp-nm-mt/translation_run.ini





You are ready to experiment with your own models.







          

      

      

    

  

    
      
          
            
  
Configuration

Experiments with NeuralMonkey are configured using configuration files
which specifies the architecture of the model, meta-parameters of the
learning, the data, the way the data are processed and the way the model
is run.


Syntax

The configuration files are based on the syntax of INI files, see
e.g., the corresponding Wikipedia
page [https://en.wikipedia.org/wiki/INI_file]..

Neural Monkey INI files contain
key-value pairs, delimited by an equal sign (=) with no spaces
around. The key-value pairs are grouped into
sections (Neural Monkey requires all pairs to belong to a section.)

Every section starts with its header which consists of the section
name in square brackets. Everything below the header is considered a
part of the section.

Comments can appear on their own (otherwise empty) line, prefixed either with a
hash sign (#) or a semicolon (;) and possibly indented.

The configuration introduces several additional constructs for the
values. There are both atomic values, and compound values.

Supported atomic values are:


	booleans: literals True and False

	integers: strings that could be interpreted as integers by Python
(e.g., 1, 002)

	floats: strings that could be interpreted as floats by Python (e.g.,
1.0, .123, 2., 2.34e-12)

	strings: string literals in quotes (e.g., "walrus", "5")

	section references: string literals in angle brackets (e.g.,
<encoder>), sections are later interpreted as Python objects

	Python names: strings without quotes which are neither booleans, integers
and floats, nor section references (e.g.,
neuralmonkey.encoders.SentenceEncoder)



On top of that, there are two compound types syntax from Python:


	lists: comma-separated in squared brackets (e.g., [1, 2, 3])

	tuples: comma-separated in round brackets (e.g.,
("target", <ter>))






Interpretation

Each configuration file contains a [main] section which is
interpreted as a dictionary having keys specified in the section and
values which are results of interpretation of the right hand sides.

Both the atomic and compound types taken from Python (i.e., everything
except the section references) are interpreted as their Python
counterparts. (So if you write 42, Neural Monkey actually sees 42.)

Section references are interpreted as references to
objects constructed when interpreting the referenced section. (So if
you write <session_manager> in a right-hand side and a section
[session_manager] later in the file, Neural Monkey will construct
a Python object based on the key-value pairs in the section
[session_manager].)

Every section except the [main] section needs to contain the key
class with
a value of Python name which is a callable (e.g., a class constructor or a
function). The other keys are used as named arguments of the callable.




Session manager

This and following sections describes TensorFlow Manager from the users’ perspective: what
can be configured in Neural Monkey with respect to TensorFlow.  The
configuration of the TensorFlow manager is specified within the INI file in
section with class neuralmonkey.tf_manager.TensorFlowManager:

[session_manager]
class=tf_manager.TensorFlowManager
...





The session_manager configuration object is then referenced from the main
section of the configuration:

[main]
tf_manager=<session_manager>
...








Training on GPU

You can easily switch between CPU and GPU version by running your experiments
in virtual environment containing either CPU or GPU version of TensorFlow
without any changes to config files.

Similarly, standard techniques like setting the environment variable
CUDA_VISIBLE_DEVICES can be used to control which GPUs are accessible for
Neural Monkey.

By default, Neural Monkey prefers to allocate GPU memory stepwise only as
needed. This can create problems with memory
fragmentation. If you know that you can allocate the whole memory at once
add the following parameter the session_manager section:

gpu_allow_growth=False





You can also restrict TensorFlow to use only a fixed proportion of GPU memory:

per_process_gpu_memory_fraction=0.65





This parameter tells TensorFlow to use only 65% of GPU memory.

With the default gpu_allow_growth=True, it makes sense to monitor memory
consumption. Neural Monkey can include a short summary total GPU memory used
in the periodic log line. Just set:

report_gpu_memory_consumption=True





The log line will then contain the information like:
MiB:0:7971/8113,1:4283/8113. This particular message means that there are
two GPU cards and the one indexed 1 has 4283 out of the total 8113 MiB
occupied. Note that the information reports all GPUs on the machine, regardless
CUDA_VISIBLE_DEVICES.




Training on CPUs

TensorFlow Manager settings also affect training on CPUs.

The line:

num_threads=4





indicates that 4 CPUs should be used for TensorFlow computations.







          

      

      

    

  

    
      
          
            
  
API Documentation


neuralmonkey package

The neuralmonkey package is the root package of this project.



Sub-modules
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Submodules




neuralmonkey.checking module

This module servers as a library of API checks used as assertions during
constructing the computational graph.


	
exception neuralmonkey.checking.CheckingException

	Bases: Exception






	
neuralmonkey.checking.assert_same_shape(tensor_a: tensorflow.python.framework.ops.Tensor, tensor_b: tensorflow.python.framework.ops.Tensor) 
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neuralmonkey.config package


Submodules




neuralmonkey.config.builder module

This module is responsible for instantiating objects
specified by the experiment configuration


	
class neuralmonkey.config.builder.ClassSymbol(string: str) 
  
    
    
    neuralmonkey.decoders package
    
    

    
 
  
  

    
      
          
            
  
neuralmonkey.decoders package


Submodules




neuralmonkey.decoders.beam_search_decoder module


	
class neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder(name: str, parent_decoder: neuralmonkey.decoders.decoder.Decoder, beam_size: int, length_normalization: float, max_steps: int = None, save_checkpoint: str = None, load_checkpoint: str = None) 
  
    
    
    neuralmonkey.encoders package
    
    

    
 
  
  

    
      
          
            
  
neuralmonkey.encoders package


Submodules




neuralmonkey.encoders.attentive module


	
class neuralmonkey.encoders.attentive.Attentive(attention_type, **kwargs)

	Bases: object

A base class fro an attentive part of graph (typically encoder).

Objects inheriting this class are able to generate an attention object that
allows a decoder to perform attention over an attention_object provided by
the encoder (e.g., input word representations in case of MT or
convolutional maps in case of image captioning).


	
create_attention_object()

	Attention object that can be used in decoder.












neuralmonkey.encoders.cnn_encoder module

CNN for image processing.


	
class neuralmonkey.encoders.cnn_encoder.CNNEncoder(name: str, data_id: str, convolutions: typing.List[typing.Tuple[int, int, typing.Union[int, NoneType]]], image_height: int, image_width: int, pixel_dim: int, fully_connected: typing.Union[typing.List[int], NoneType] = None, dropout_keep_prob: float = 0.5, attention_type: typing.Type = <class 'neuralmonkey.decoding_function.Attention'>, save_checkpoint: typing.Union[str, NoneType] = None, load_checkpoint: typing.Union[str, NoneType] = None) 
  
    
    
    neuralmonkey.evaluators package
    
    

    
 
  
  

    
      
          
            
  
neuralmonkey.evaluators package


Submodules




neuralmonkey.evaluators.accuracy module


	
class neuralmonkey.evaluators.accuracy.AccuracyEvaluator(name: str = 'Accuracy') 
  
    
    
    neuralmonkey.model package
    
    

    
 
  
  

    
      
          
            
  
neuralmonkey.model package


Submodules




neuralmonkey.model.model_part module

Basic functionality of all model parts.


	
class neuralmonkey.model.model_part.ModelPart(name: str, save_checkpoint: typing.Union[str, NoneType] = None, load_checkpoint: typing.Union[str, NoneType] = None) 
  
    
    
    neuralmonkey.nn package
    
    

    
 
  
  

    
      
          
            
  
neuralmonkey.nn package


Submodules




neuralmonkey.nn.highway module

This module implements the highway networks.


	
neuralmonkey.nn.highway.highway(inputs, activation=<function relu>, scope='HighwayNetwork')

	Simple highway layer

y = H(x, Wh) * T(x, Wt) + x * C(x, Wc)

where:

C(x, Wc) = 1 - T(x, Wt)





	Parameters:	
	inputs – A tensor or list of tensors. It should be 2D tensors with
equal length in the first dimension (batch size)

	activation – Activation function of the linear part of the formula
H(x, Wh).

	scope – The name of the scope used for the variables.






	Returns:	A tensor of shape tf.shape(inputs)














neuralmonkey.nn.mlp module


	
class neuralmonkey.nn.mlp.MultilayerPerceptron(mlp_input: tensorflow.python.framework.ops.Tensor, layer_configuration: typing.List[int], dropout_keep_prob: float, output_size: int, train_mode: tensorflow.python.framework.ops.Tensor, activation_fn: typing.Callable[[tensorflow.python.framework.ops.Tensor], tensorflow.python.framework.ops.Tensor] = <function relu>, name: str = 'multilayer_perceptron') 
  
    
    
    neuralmonkey.processors package
    
    

    
 
  
  

    
      
          
            
  
neuralmonkey.processors package


Submodules




neuralmonkey.processors.alignment module


	
class neuralmonkey.processors.alignment.WordAlignmentPreprocessor(source_len, target_len, dtype=<class 'numpy.float32'>, normalize=True, zero_based=True)

	Bases: object

A preprocessor for word alignments in a text format.

One of the following formats is expected:


s1-t1 s2-t2 ...

s1:1/w1 s2:t2/w2 ...




where each s and t is the index of a word in the source and target
sentence, respectively, and w is the corresponding weight. If the weight
is not given, it is assumend to be 1. The separators - and : are
interchangeable.

The output of the preprocessor is an alignment matrix of the fixed shape
(target_len, source_len) for each sentence.








neuralmonkey.processors.bpe module


	
class neuralmonkey.processors.bpe.BPEPostprocessor(separator: str = '@@') 
  
    
    
    neuralmonkey.readers package
    
    

    
 
  
  

    
      
          
            
  
neuralmonkey.readers package


Submodules




neuralmonkey.readers.audio_reader module




neuralmonkey.readers.image_reader module


	
neuralmonkey.readers.image_reader.image_reader(prefix='', pad_w: typing.Union[int, NoneType] = None, pad_h: typing.Union[int, NoneType] = None, rescale: bool = False, mode: str = 'RGB') 
  
    
    
    neuralmonkey.runners package
    
    

    
 
  
  

    
      
          
            
  
neuralmonkey.runners package


Submodules




neuralmonkey.runners.base_runner module


	
class neu