
Neural Monkey Documentation
Release 0.1

Jindřich Libovický, Jindřich Helcl, Tomáš Musil

Nov 22, 2017

Contents

1 Getting Started 3

Python Module Index 99

i

ii

Neural Monkey Documentation, Release 0.1

Neural Monkey is an open-source toolkit for sequence learning using Tensorflow.

If you want to dig in the code, you can browse the repository.

Contents 1

https://github.com/ufal/neuralmonkey

Neural Monkey Documentation, Release 0.1

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

Before you start, make sure that you already have installed Python 3.5, pip and git.

Create and activate a virtual environment to install the package into:

$ python3 -m venv nm
$ source nm/bin/activate
after this, your prompt should change

Then clone Neural Monkey from GitHub and switch to its root directory:

(nm)$ git clone https://github.com/ufal/neuralmonkey
(nm)$ cd neuralmonkey

Run pip to install all requirements. For the CPU version install dependencies by this command:

(nm)$ pip install --upgrade -r requirements.txt

For the GPU version install dependencies try this command:

(nm)$ pip install --upgrade -r requirements-gpu.txt

If you are using the GPU version, make sure that the LD_LIBRARY_PATH environment variable points to lib and
lib64 directories of your CUDA and CuDNN installations. Similarly, your PATH variable should point to the bin
subdirectory of the CUDA installation directory.

You made it! Neural Monkey is now installed!

1.1.1 Note for Ubuntu 14.04 Users

If you get Segmentation fault errors at the very end of the training process, you can either ignore it, or follow the steps
outlined in this document.

3

ubuntu1404_fix.html

Neural Monkey Documentation, Release 0.1

1.2 Package Overview

This overview should provide you with the basic insight on how Neural Monkey conceptualizes the problem of
sequence-to-sequence learning and how the data flow during training and running models looks like.

1.2.1 Loading and Processing Datasets

We call a dataset a collection of named data series. By a series we mean a list of data items of the same type
representing one type of input or desired output of a model. In the simple case of machine translation, there are two
series: a list of source-language sentences and a list of target-language sentences.

The following scheme captures how a dataset is created from input data.

The dataset is created in the following steps:

1. An input file is read using a reader. Reader can e.g., load a file containing paths to JPEG images and load them
as numpy arrays, or read a tokenized text as a list of lists (sentences) of string tokens.

2. Series created by the readers can be preprocessed by some series-level preprocessors. An example of such
preprocessing is byte-pair encoding which loads a list of merges and segments the text accordingly.

3. The final step before creating a dataset is applying dataset-level preprocessors which can take more series and
output a new series.

Currently there are two implementations of a dataset. An in-memory dataset which stores all data in the memory and a
lazy dataset which gradually reads the input files step by step and only stores the batches necessary for the computation
in the memory.

1.2.2 Training and Running a Model

This section describes the training and running workflow. The main concepts and their interconnection can be seen in
the following scheme.

The dataset series can be used to create a vocabulary. A vocabulary represents an indexed set of tokens and provides
functionality for converting lists of tokenized sentences into matrices of token indices and vice versa. Vocabularies are
used by encoders and decoders for feeding the provided series into the neural network.

The model itself is defined by encoders and decoders. Most of the TensorFlow code is in the encoders and decoders.
Encoders are parts of the model which take some input and compute a representation of it. Decoders are model parts
that produce some outputs. Our definition of encoders and decoders is more general than in the classical sequence-to-
sequence learning. An encoder can be for example a convolutional network processing an image. The RNN decoder
is for us only a special type of decoder, it can be also a sequence labeler or a simple multilayer-perceptron classifier.

Decoders are executed using so-called runners. Different runners represent different ways of running the model. We
might want to get a single best estimation, get an n-best list or a sample from the model. We might want to use an
RNN decoder to get the decoded sequences or we might be interested in the word alignment obtained by its attention
model. This is all done by employing different runners over the decoders. The outputs of the runners can be subject
of further post-processing.

Additionally to runners, each training experiment has to have its trainer. A trainer is a special case of a runner that
actually modifies the parameters of the model. It collects the objective functions and uses them in an optimizer.

Neural Monkey manages TensorFlow sessions using an object called TensorFlow manager. Its basic capability is to
execute runners on provided datasets.

4 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

1.3 Post-Editing Task Tutorial

This tutorial will guide you through designing your first experiment in Neural Monkey.

Before we get started with the tutorial, please check that you have the Neural Monkey package properly installed and
working.

1.3.1 Part I. - The Task

This section gives an overall description of the task we will try to solve in this tutorial. To make things more interesting
than plain machine translation, let’s try automatic post-editing task (APE, rhyming well with Neural Monkey).

In short, automatic post-editing is a task, in which we have a source language sentence (let’s call it f, as grown-ups
do), a machine-translated sentence of f (I actually don’t know what grown-ups call this, so let’s call this e'), and we
are expected to generate another sentence in the same language as e' but cleaned of all the errors that the machine
translation system have made (let’s call this cleaned sentence e). Consider this small example:

Source sentence f: Bärbel hat eine Katze.

Machine-translated sentence e': Bärbel has a dog.

Corrected translation e: Bärbel has a cat.

In the example, the machine translation system wrongly translated the German word “Katze” as the English word
“dog”. It is up to the post-editing system to fix this error.

In theory (and in practice), we regard the machine translation task as searching for a target sentence e* that has the
highest probability of being the translation given the source sentence f. You can put it to a formula:

e* = argmax_e p(e|f)

In the post-editing task, the formula is slightly different:

e* = argmax_e p(e|f, e')

If you think about this a little, there are two ways one can look at this task. One is that we are translating the machine-
translated sentence from a kind of synthetic language into a proper one, with additional knowledge what the source
sentence was. The second view regards this as an ordinary machine translation task, with a little help from another
MT system.

In our tutorial, we will assume the MT system used to produce the sentence e' was good enough. We thus generally
trust it and expect only to make small edits to the translated sentence in order to make it fully correct. This means that
we don’t need to train a whole new MT system that would translate the source sentences from scratch. Instead, we
will build a system that will tell us how to edit the machine translated sentence e'.

1.3.2 Part II. - The Edit Operations

How can an automatic system tell us how to edit a sentence? Here’s one way to do it: We will design a set of edit
operations and train the system to generate a sequence of these operations. If we consider a sequence of edit operations
a function R (as in rewrite), which transforms one sequence to another, we can adapt the formulas above to suit our
needs more:

R* = argmax_R p(R(e')|f, e')
e* = R*(e')

1.3. Post-Editing Task Tutorial 5

Neural Monkey Documentation, Release 0.1

So we are searching for the best edit function R* that, once applied to e', will give us the corrected output e*.
Another question is what the class of all possible edit functions should look like, for now we simply limit them to
functions that can be defined as sequences of edit operations.

The edit function R processes the input sequence token-by-token in left-to-right direction. It has a pointer to the input
sequence, which starts by pointing to the first word of the sequence.

We design three types of edit operations as follows:

1. KEEP - this operation copies the current word to the output and moves the pointer to the next token of the input,

2. DELETE - this operation does not emit anything to the output and moves the pointer to the next token of the
input,

3. INSERT - this operation puts a word on the output, leaving the pointer to the input intact.

The edit function applies all its operations to the input sentence. We handle malformed edit sequences simply: if the
pointer reaches the end of the input seqence, operations KEEP and DELETE do nothing. If the sequence of edits ends
before the end of the input sentence is reached, we apply as many additional KEEP operations as needed to reach the
end of the input sequence.

Let’s see another example:

Bärbel has a dog .
KEEP KEEP KEEP DELETE cat KEEP

The word “cat” on the second line is an INSERT operation parameterized by the word “cat”. If we apply all the edit
operations to the input (i.e. keep the words “Bärbel”, “has”, “a”, and ”.”, delete the word “dog” and put the word “cat”
in its place), we get the corrected target sentence.

1.3.3 Part III. - The Data

We are going to use the data for WMT 16 shared APE task. You can get them at the WMT 16 website or directly at
the Lindat repository. There are three files in the repository:

1. TrainDev.zip - contains training and development data set

2. Test.zip - contains source and translated test data

3. test_pe.zip - contains the post-edited test data

Now - before we start, let’s create our experiment directory, in which we will place all our work. We shall call it for
example exp-nm-ape (feel free to choose another weird string).

Extract all the files into the exp-nm-ape/data directory. Rename the files and directories so you get this directory
structure:

exp-nm-ape
|
\== data

|
|== train
| |
| |== train.src
| |== train.mt
| \== train.pe
|
|== dev
| |
| |== dev.src
| |== dev.mt

6 Chapter 1. Getting Started

http://www.statmt.org/wmt16/ape-task.html
http://hdl.handle.net/11372/LRT-1632

Neural Monkey Documentation, Release 0.1

| \== dev.pe
|
\== test

|
|== test.src
|== test.mt
\== test.pe

The data is already tokenized so we don’t need to run any preprocessing tools. The format of the data is plain text
with one sentence per line. There are 12k training triplets of sentences, 1k development triplets and 2k of evaluation
triplets.

Preprocessing of the Data

The next phase is to prepare the post editing sequences that we should learn during training. We apply the Levenshtein
algorithm to find the shortest edit path from the translated sentence to the post-edited sentence. As a little coding
excercise, you can implement your own script that does the job, or you may use our preprocessing script from the
Neural Monkey package. For this, in the neuralmonkey root directory, run:

scripts/postedit_prepare_data.py \
--translated-sentences=exp-nm-ape/data/train/train.mt \
--target-sentences=exp-nm-ape/data/train/train.pe \

> exp-nm-ape/data/train/train.edits

And the same for the development data.

NOTE: You may have to change the path to the exp-nm-ape directory if it is not located inside the repository root
directory.

NOTE 2: There is a hidden option of the preparation script (--target-german=True) which turns on some steps
tailored for better processing of German text. In this tutorial, we are not going to use it.

If you look at the preprocessed files, you will see that the KEEP and DELETE operations are represented with special
tokens while the INSERT operations are represented simply with the word they insert.

Congratulations! Now, you should have train.edits, dev.edits and test.edits files all in their respective data directories.
We can now move to work with Neural Monkey configurations!

1.3.4 Part IV. - The Model Configuration

In Neural Monkey, all information about a model and its training is stored in configuration files. The syntax of
these files is a plain INI syntax (more specifically, the one which gets processed by Python’s ConfigParser). The
configuration file is structured into a set of sections, each describing a part of the training. In this section, we will go
through all of them and write our configuration file needed for the training of the post-editing task.

First of all, create a file called post-edit.ini and put it inside the exp-nm-ape directory. Put all the snippets
that we will describe in the following paragraphs into the file.

1 - Datasets

For training, we prepare two datasets. The first dataset will serve for the training, the second one for validation. In
Neural Monkey, each dataset contains a number of so called data series. In our case, we will call the data series source,
translated, and edits. Each of those series will contain the respective set of sentences.

It is assumed that all series within a given dataset have the same number of elements (i.e. sentences in our case).

1.3. Post-Editing Task Tutorial 7

Neural Monkey Documentation, Release 0.1

The configuration of the datasets looks like this:

[train_dataset]
class=dataset.load_dataset_from_files
s_source="exp-nm-ape/data/train/train.src"
s_translated="exp-nm-ape/data/train/train.mt"
s_edits="exp-nm-ape/data/train/train.edits"

[val_dataset]
class=dataset.load_dataset_from_files
s_source="exp-nm-ape/data/dev/dev.src"
s_translated="exp-nm-ape/data/dev/dev.mt"
s_edits="exp-nm-ape/data/dev/dev.edits"

Note that series names (source, translated, and edits) are arbitrary and defined by their first mention. The s_ prefix
stands for “series” and is used only here in the dataset sections, not later when the series are referred to.

These two INI sections represent two calls to function neuralmonkey.config.dataset_from_files, with
the series file paths as keyword arguments. The function serves as a constructor and builds an object for every call. So
at the end, we will have two objects representing the two datasets.

2 - Vocabularies

Each encoder and decoder which deals with language data operates with some kind of vocabulary. In our case, the
vocabulary is just a list of all unique words in the training data. Note that apart the special <keep> and <delete>
tokens, the vocabularies for the translated and edits series are from the same language. We can save some memory
and perhaps improve quality of the target language embeddings by share vocabularies for these datasets. Therefore,
we need to create only two vocabulary objects:

[source_vocabulary]
class=vocabulary.from_dataset
datasets=[<train_dataset>]
series_ids=["source"]
max_size=50000

[target_vocabulary]
class=vocabulary.from_dataset
datasets=[<train_dataset>]
series_ids=["edits", "translated"]
max_size=50000

The first vocabulary object (called source_vocabulary) represents the (English) vocabulary used for this task.
The 50,000 is the maximum size of the vocabulary. If the actual vocabulary of the data was bigger, the rare words
would be replaced by the <unk> token (hardcoded in Neural Monkey, not part of the 50,000 items), which stands for
unknown words. In our case, however, the vocabularies of the datasets are much smaller so we won’t lose any words.

Both vocabularies are created out of the training dataset, as specified by the line datasets=[<train_dataset>]
(more datasets could be given in the list). This means that if there are any unseen words in the development or test
data, our model will treat them as unknown words.

We know that the languages in the translated series and edits are the same (except for the KEEP and
DELETE tokens in the edits), so we create a unified vocabulary for them. This is achieved by specifying
series_ids=[edits, translated]. The one-hot encodings (or more precisely, indices to the vocabulary)
will be identical for words in translated and edits.

8 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

3 - Encoders

Our network will have two inputs. Therefore, we must design two separate encoders. The first encoder will process
source sentences, and the second will process translated sentences, i.e. the candidate translations that we are expected
to post-edit. This is the configuration of the encoder for the source sentences:

[src_encoder]
class=encoders.recurrent.SentenceEncoder
rnn_size=300
max_input_len=50
embedding_size=300
dropout_keep_prob=0.8
attention_type=decoding_function.Attention
data_id="source"
name="src_encoder"
vocabulary=<source_vocabulary>

This configuration initializes a new instance of sentence encoder with the hidden state size set to 300 and the maximum
input length set to 50. (Longer sentences are trimmed.) The sentence encoder looks up the words in a word embedding
matrix. The size of the embedding vector used for each word from the source vocabulary is set to 300. The source
data series is fed to this encoder. 20% of the weights is dropped out during training from the word embeddings and
from the attention vectors computed over the hidden states of this encoder. Note the name attribute must be set in
each encoder and decoder in order to prevent collisions of the names of Tensorflow graph nodes.

The configuration of the second encoder follows:

[trans_encoder]
class=encoders.recurrent.SentenceEncoder
rnn_size=300
max_input_len=50
embedding_size=300
dropout_keep_prob=0.8
attention_type=decoding_function.Attention
data_id="translated"
name="trans_encoder"
vocabulary=<target_vocabulary>

This config creates a second encoder for the translated data series. The setting is the same as for the first encoder,
except for the different vocabulary and name.

4 - Decoder

Now, we configure perhaps the most important object of the training - the decoder. Without further ado, here it goes:

[decoder]
class=decoders.decoder.Decoder
name="decoder"
encoders=[<trans_encoder>, <src_encoder>]
rnn_size=300
max_output_len=50
embeddings_encoder=<trans_encoder>
dropout_keep_prob=0.8
use_attention=True
data_id="edits"
vocabulary=<target_vocabulary>

1.3. Post-Editing Task Tutorial 9

Neural Monkey Documentation, Release 0.1

As in the case of encoders, the decoder needs its RNN and embedding size settings, maximum output length, dropout
parameter, and vocabulary settings.

The outputs of the individual encoders are by default simply concatenated and projected to the decoder hidden state
(of rnn_size). Internally, the code is ready to support arbitrary mappings by adding one more parameter here:
encoder_projection.

Note that you may set rnn_size to None. Neural Monkey will then directly use the concatenation of encoder states
without any mapping. This is particularly useful when you have just one encoder as in MT.

The line embeddings_encoder=<trans_encoder> means that the embeddings (including embedding size)
are shared with trans_encoder.

The loss of the decoder is computed against the edits data series of whatever dataset the decoder will be applied to.

5 - Runner and Trainer

As their names suggest, runners and trainers are used for running and training models. The trainer object provides
the optimization operation to the graph. In the case of the cross entropy trainer (used in our tutorial), the default
optimizer is Adam and it is run against the decoder’s loss, with added L2 regularization (controlled by the l2_weight
parameter of the trainer). The runner is used to process a dataset by the model and return the decoded sentences, and
(if possible) decoder losses.

We define these two objects like this:

[trainer]
class=trainers.cross_entropy_trainer.CrossEntropyTrainer
decoders=[<decoder>]
l2_weight=1.0e-8

[runner]
class=runners.runner.GreedyRunner
decoder=<decoder>
output_series="greedy_edits"

Note that a runner can only have one decoder, but during training you can train several decoders, all contributing to
the loss function.

The purpose of the trainer is to optimize the model, so we are not interested in the actual outputs it produces, only the
loss compared to the reference outputs (and the loss is calculated by the given decoder).

The purpose of the runner is to get the actual outputs and for further use, they are collected to a new series called
greedy_edits (see the line output_series=) of whatever dataset the runner will be applied to.

6 - Evaluation Metrics

During validation, the whole validation dataset gets processed by the models and the decoded sentences are evaluated
against a reference to provide the user with the state of the training. For this, we need to specify evaluator objects
which will be used to score the outputted sentences. In our case, we will use BLEU and TER:

[bleu]
class=evaluators.bleu.BLEUEvaluator
name="BLEU-4"

10 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

7 - TensorFlow Manager

In order to handle global variables such as how many CPU cores TensorFlow should use, you need to specify a
“TensorFlow manager”:

[tf_manager]
class=tf_manager.TensorFlowManager
num_threads=4
num_sessions=1
minimize_metric=True
save_n_best=3

8 - Main Configuration Section

Almost there! The last part of the configuration puts all the pieces together. It is called main and specifies the rest of
the training parameters:

[main]
name="post editing"
output="exp-nm-ape/training"
runners=[<runner>]
tf_manager=<tf_manager>
trainer=<trainer>
train_dataset=<train_dataset>
val_dataset=<val_dataset>
evaluation=[("greedy_edits", "edits", <bleu>), ("greedy_edits", "edits", evaluators.
→˓ter.TER)]
batch_size=128
runners_batch_size=256
epochs=100
validation_period=1000
logging_period=20

The output parameter specifies the directory, in which all the files generated by the training (used for replicability
of the experiment, logging, and saving best models variables) are stored. It is also worth noting, that if the output
directory exists, the training is not run, unless the line overwrite_output_dir=True is also included here.

The runners, tf_manager, trainer, train_dataset and val_dataset options are self-explanatory.

The parameter evaluation takes list of tuples, where each tuple contains: - the name of output series (as produced
by some runner), greedy_edits here, - the name of the reference series of the dataset, edits here, - the reference
to the evaluation algorithm, <bleu> and evaluators.ter.TER in the two tuples here.

The batch_size parameter controls how many sentences will be in one training mini-batch. When the model does
not fit into GPU memory, it might be a good idea to start reducing this number before anything else. The larger the
batch size, however, the sooner the training should converge to the optimum.

Runners are less memory-demanding, so runners_batch_size can be set higher than batch_size.

The epochs parameter specifies the number of passes through the training data that the training loop should do.
There is no early stopping mechanism in Neural Monkey yet, the training can be resumed after the end, however. The
training can be safely ctrl+C’ed in any time: Neural Monkey preserves the last save_n_best best model variables
saved on the disk.

The validation and logging periods specify how often to measure the model’s performance on the training batch
(logging_period) or on validation data (validation_period). Note that both logging and validation involve
running the runners over the current batch or the validation data, resp. If this happens too often, the time needed to
train the model can significantly grow.

1.3. Post-Editing Task Tutorial 11

Neural Monkey Documentation, Release 0.1

At each validation (and logging), the output is scored using the specified evaluation metrics. The last of the evaluation
metrics (TER in our case) is used to keep track of the model performance over time. Whenever the score on validation
data is better than any of the save_n_best (3 in our case) previously saved models, the model is saved, discaring
unneccessary lower scoring models.

1.3.5 Part V. - Running an Experiment

Now that we have prepared the data and the experiment INI file, we can run the training. If your Neural Monkey
installation is OK, you can just run this command from the root directory of the Neural Monkey repository:

bin/neuralmonkey-train exp-nm-ape/post-edit.ini

You should see the training program reporting the parsing of the configuration file, initializing the model, and eventu-
ally the training process. If everything goes well, the training should run for 100 epochs. You should see a new line
with the status of the model’s performance on the current batch every few seconds, and there should be a validation
report printed every few minutes.

As given in the main.output config line, the Neural Monkey creates the directory experiments/training
with these files:

• git_commit - the Git hash of the current Neural Monkey revision.

• git_diff - the diff between the clean checkout and the working copy.

• experiment.ini - the INI file used for running the training (a simple copy of the file NM was started with).

• experiment.log - the output log of the training script.

• checkpoint - file created by Tensorflow, keeps track of saved variables.

• events.out.tfevents.<TIME>.<HOST> - file created by Tensorflow, keeps the summaries for Tensor-
Board visualisation

• variables.data[.<N>] - a set of files with N best saved models.

• variables.data.best - a symbolic link that points to the variable file with the best model.

1.3.6 Part VI. - Evaluation of the Trained Model

If you have reached this point, you have nearly everything this tutorial offers. The last step of this tutorial is to take
the trained model and to apply it to a previously unseen dataset. For this you will need two additional configuration
files. But fear not - it’s not going to be that difficult. The first configuration file is the specification of the model. We
have this from Part III and a small optional change is needed. The second configuration file tells the run script which
datasets to process.

The optional change of the model INI file prevents the training dataset from loading. This is a flaw in the present
design and it is planned to change. The procedure is simple:

1. Copy the file post-edit.ini into e.g. post-edit.test.ini

2. Open the post-edit.test.ini file and remove the train_dataset and val_dataset sections, as
well as the train_dataset and val_dataset configuration from the [main] section.

Now we have to make another file specifying the testing dataset configuration. We will call this file
post-edit_run.ini:

[main]
test_datasets=[<eval_data>]

12 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

[eval_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-ape/data/test/test.src"
s_translated="exp-nm-ape/data/test/test.mt"
s_greedy_edits_out="exp-nm-ape/test_output.edits"

The dataset specifies the two input series s_source and s_translated (the candidate MT output output to be
post-edited) as in the training. The series s_edits (containing reference edits) is not present in the evaluation
dataset, because we do not want to use the reference edits to compute loss at this point. Usually, we don’t even know
the correct output at runtime.

Instead, we introduce the output series s_greedy_edits_out (the prefix s_ and the suffix _out are hardcoded
in Neural Monkey and the series name in between has to match the name of the series produced by the runner).

The line s_greedy_edits_out= specifies the file where the output should be saved. (You may want to alter the
path to the exp-nm-ape directory if it is not located inside the Neural Monkey package root dir.)

We have all that we need to run the trained model on the evaluation dataset. From the root directory of the Neural
Monkey repository, run:

bin/neuralmonkey-run exp-nm-ape/post-edit.test.ini exp-nm-ape/post-edit_run.ini

At the end, you should see a new file exp-nm-ape/test_output.edits. As you notice, the contents of this
file are the sequences of edit operations, which if applied to the machine translated sentences, generate the output that
we want. The final step is to call the provided post-processing script. Again, feel free to write your own as a simple
exercise:

scripts/postedit_reconstruct_data.py \
--edits=exp-nm-ape/test_output.edits \
--translated-sentences=exp-nm-ape/data/test/test.mt \
> test_output.pe

Now, you can run the official tools (like mteval or the tercom software available on the WMT 16 website) to measure
the score of test_output.pe on the data/test/test.pe reference evaluation dataset.

1.3.7 Part VII. - Conclusions

This tutorial gave you the basic overview of how to design your experiments using Neural Monkey. The sample
experiment was the task of automatic post-editing. We got the data from the WMT 16 APE shared task and pre-
processed them to fit our needs. We have written the configuration file and run the training. At the end, we evaluated
the model on the test dataset.

If you want to learn more, the next step is perhaps to browse the examples directory in Neural Monkey repository
and see some further possible setups. If you are planning to just design an experiment using existing modules, you can
start by editing one of those examples as well.

If you want to dig in the code, you can browse the repository. Please feel free to fork the repository and to send us
pull requests. The API documentation is currently under construction, but it already contains a little information about
Neural Monkey objects and their configuraiton options.

Have fun!

1.3. Post-Editing Task Tutorial 13

http://www.statmt.org/wmt16/ape-task.html
https://github.com/ufal/neuralmonkey
http://neural-monkey.readthedocs.io/

Neural Monkey Documentation, Release 0.1

1.4 Machine Translation Tutorial

This tutorial will guide you through designing Machnine Translation experiments in Neural Monkey. We assumes that
you already read the post-editing tutorial.

The goal of the translation task is to translate sentences from one language into another. For this tutorial we use data
from the WMT 16 IT-domain translation shared task on English-to-Czech direction.

WMT is an annual machine translation conference where academic groups compete in translating different datasets
over various language pairs.

1.4.1 Part I. - The Data

We are going to use the data for the WMT 16 IT-domain translation shared task. You can get them at the WMT IT
Translation Shared Task webpage and there download Batch1 and Batch2 answers and Batch3 as a testing set. Or
directly here and testset.

Note: In this tutorial we are using only small dataset as an example, which is not big enough for real-life machine
translation training.

We find several files for different languages in the downloaded archive. From which we use only the following files as
our training, validation and test set:

1. ``Batch1a_cs.txt and Batch1a_en.txt`` as our Training set
2. ``Batch2a_cs.txt and Batch2a_en.txt`` as a Validation set
3. ``Batch3a_en.txt`` as a Test set

Now - before we start, let’s make our experiment directory, in which we place all our work. Let’s call it exp-nm-mt.

First extract all the downloaded files, then make gzip files from individual files and put arrange them into the following
directory structure:

exp-nm-mt
|
\== data

|
|== train
| |
| |== Batch1a_en.txt.gz
| \== Batch1a_cs.txt.gz
|
|== dev
| |
| |== Batch2a_en.txt.gz
| \== Batch2a_cs.txt.gz
|
\== test

|
\== Batch3a_en.txt.gz

The gzipping is not necessary, if you put the dataset there in plaintext, it will work the same way. Neural Mon-
key recognizes gzipped files by their MIME

type and chooses the correct way to open them.

TODO The dataset is not tokenized and need to be preprocessed.

14 Chapter 1. Getting Started

http://www.statmt.org/wmt16/
http://www.statmt.org/wmt16/it-translation-task.html
http://www.statmt.org/wmt16/it-translation-task.html
http://ufallab.ms.mff.cuni.cz/~popel/batch1and2.zip
http://ufallab.ms.mff.cuni.cz/~popel/batch3.zip

Neural Monkey Documentation, Release 0.1

Byte Pair Encoding

Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-
vocabulary problem. Byte pair encoding (BPE) enables NMT model translation on open-vocabulary by encoding
rare and unknown words as sequences of subword units. This is based on an intuition that various word classes are
translatable via smaller units than words. More information in the paper https://arxiv.org/abs/1508.07909 BPE creates
a list of merges that are used for splitting out-of-vocabulary words. Example of such splitting:

basketball => basket@@ ball

Postprocessing can be manually done by:

sed "s/@@ //g"

but Neural Monkey manages it for you.

BPE Generation

In order to use BPE, you must first generate merge_file, over all data. This file is generated on both source and target
dataset. You can generate it by running following script:

neuralmonkey/lib/subword_nmt/learn_bpe.py -s 50000 < DATA > merge_file.bpe

With the data from this tutorial it would be the following command:

paste Batch1a_en.txt Batch1a_cs.txt \
| neuralmonkey/lib/subword_nmt/learn_bpe.py -s 8000 \
> exp-nm-mt/data/merge_file.bpe

You can change number of merges, this number is equivalent to the size of the vocabulary. Do not forget that as an
input is the file containing both source and target sides.

1.4.2 Part II. - The Model Configuration

In this section, we create the configuration file translation.ini needed for the machine translation training. We
mention only the differences from the main post-editing tutorial.

1 - Datasets

For training, we prepare two datasets. Since we are using BPE, we need to define the preprocessor. The configu-
ration of the datasets looks like this:

[train_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-mt/data/train/Batch1a_en.txt.gz"
s_target="exp-nm-mt/data/train/Batch1a_cs.txt.gz"
preprocessors=[("source", "source_bpe", <bpe_preprocess>), ("target", "target_bpe",
→˓<bpe_preprocess>)]

[val_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-mt/data/dev/Batch2a_en.txt.gz"
s_target="exp-nm-mt/data/dev/Batch2a_cs.txt.gz"
preprocessors=[("source", "source_bpe", <bpe_preprocess>), ("target", "target_bpe",
→˓<bpe_preprocess>)]

1.4. Machine Translation Tutorial 15

https://arxiv.org/abs/1508.07909

Neural Monkey Documentation, Release 0.1

2 - Preprocessor and Postprocessor

We need to tell the Neural Monkey how it should handle preprocessing and postprocessing due to the BPE:

[bpe_preprocess]
class=processors.bpe.BPEPreprocessor
merge_file="exp-nm-mt/data/merge_file.bpe"

[bpe_postprocess]
class=processors.bpe.BPEPostprocessor

3 - Vocabularies

For both encoder and decoder we use shared vocabulary created from BPE merges:

[shared_vocabulary]
class=vocabulary.from_bpe
path="exp-nm-mt/data/merge_file.bpe"

4 - Encoder and Decoder

The encoder and decored are similar to those from the post-editing tutorial:

[encoder]
class=encoders.recurrent.SentenceEncoder
name="sentence_encoder"
rnn_size=300
max_input_len=50
embedding_size=300
dropout_keep_prob=0.8
attention_type=decoding_function.Attention
data_id="source_bpe"
vocabulary=<shared_vocabulary>

[decoder]
class=decoders.decoder.Decoder
name="decoder"
encoders=[<encoder>]
rnn_size=256
embedding_size=300
dropout_keep_prob=0.8
use_attention=True
data_id="target_bpe"
vocabulary=<shared_vocabulary>
max_output_len=50

You can notice that both encoder and decoder uses as input data id the data preprocessed by <bpe_preprocess>.

5 - Training Sections

The following sections are described in more detail in the post-editing tutorial:

16 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

[trainer]
class=trainers.cross_entropy_trainer.CrossEntropyTrainer
decoders=[<decoder>]
l2_weight=1.0e-8

[runner]
class=runners.runner.GreedyRunner
decoder=<decoder>
output_series="series_named_greedy"
postprocess=<bpe_postprocess>

[bleu]
class=evaluators.bleu.BLEUEvaluator
name="BLEU-4"

[tf_manager]
class=tf_manager.TensorFlowManager
num_threads=4
num_sessions=1
minimize_metric=False
save_n_best=3

As for the main configuration section do not forget to add BPE postprocessing:

[main]
name="machine translation"
output="exp-nm-mt/out-example-translation"
runners=[<runner>]
tf_manager=<tf_manager>
trainer=<trainer>
train_dataset=<train_data>
val_dataset=<val_data>
evaluation=[("series_named_greedy", "target", <bleu>), ("series_named_greedy", "target
→˓", evaluators.ter.TER)]
batch_size=80
runners_batch_size=256
epochs=10
validation_period=5000
logging_period=80

1.4.3 Part III. - Running and Evaluation of the Experiment

1 - Training

The training can be run as simply as:

bin/neuralmonkey-train exp-nm-mt/translation.ini

2 - Resuming Training

If training stopped and you want to resume it, you can load pre-trained parameters by specifying the
initial_variables of the model in the [main] section:

1.4. Machine Translation Tutorial 17

Neural Monkey Documentation, Release 0.1

[main]
initial_variables=/path/to/variables.data

Note there is actually no file called variables.data, but three files with this common prefix. The
initial_variables config value should correspond to this prefix.

3 - Evaluation

As for the evaluation, you need to create translation_run.ini:

[main]
test_datasets=[<eval_data>]
; We saved 3 models (save_n_best=3), so there are
; multiple models we could to translate with.
; We can go with the best model, or select one manually:
;variables=["exp-nm-mt/out-example-translation/variables.data.0"]

[bpe_preprocess]
class=processors.bpe.BPEPreprocessor
merge_file="exp-nm-mt/data/merge_file.bpe"

[eval_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-mt/data/test/Batch3a_en.txt.gz"
s_series_named_greedy_out="exp-nm-mt/out-example-translation/evaluation.txt.out"
preprocessors=[("source", "source_bpe", <bpe_preprocess>)]

and run:

bin/neuralmonkey-run exp-nm-mt/translation.ini exp-nm-mt/translation_run.ini

You are ready to experiment with your own models.

1.5 Configuration

Experiments with NeuralMonkey are configured using configuration files which specifies the architecture of the model,
meta-parameters of the learning, the data, the way the data are processed and the way the model is run.

1.5.1 Syntax

The configuration files are based on the syntax of INI files, see e.g., the corresponding Wikipedia page..

Neural Monkey INI files contain key-value pairs, delimited by an equal sign (=) with no spaces around. The key-value
pairs are grouped into sections (Neural Monkey requires all pairs to belong to a section.)

Every section starts with its header which consists of the section name in square brackets. Everything below the header
is considered a part of the section.

Comments can appear on their own (otherwise empty) line, prefixed either with a hash sign (#) or a semicolon (;) and
possibly indented.

The configuration introduces several additional constructs for the values. There are both atomic values, and compound
values.

Supported atomic values are:

18 Chapter 1. Getting Started

https://en.wikipedia.org/wiki/INI_file

Neural Monkey Documentation, Release 0.1

• booleans: literals True and False

• integers: strings that could be interpreted as integers by Python (e.g., 1, 002)

• floats: strings that could be interpreted as floats by Python (e.g., 1.0, .123, 2., 2.34e-12)

• strings: string literals in quotes (e.g., "walrus", "5")

• section references: string literals in angle brackets (e.g., <encoder>), sections are later interpreted as Python
objects

• Python names: strings without quotes which are neither booleans, integers and floats, nor section references
(e.g., neuralmonkey.encoders.SentenceEncoder)

On top of that, there are two compound types syntax from Python:

• lists: comma-separated in squared brackets (e.g., [1, 2, 3])

• tuples: comma-separated in round brackets (e.g., ("target", <ter>))

1.5.2 Interpretation

Each configuration file contains a [main] section which is interpreted as a dictionary having keys specified in the
section and values which are results of interpretation of the right hand sides.

Both the atomic and compound types taken from Python (i.e., everything except the section references) are interpreted
as their Python counterparts. (So if you write 42, Neural Monkey actually sees 42.)

Section references are interpreted as references to objects constructed when interpreting the referenced section. (So if
you write <session_manager> in a right-hand side and a section [session_manager] later in the file, Neural
Monkey will construct a Python object based on the key-value pairs in the section [session_manager].)

Every section except the [main] section needs to contain the key class with a value of Python name which is a
callable (e.g., a class constructor or a function). The other keys are used as named arguments of the callable.

1.5.3 Session Manager

This and following sections describes TensorFlow Manager from the users’ perspective: what can be configured in
Neural Monkey with respect to TensorFlow. The configuration of the TensorFlow manager is specified within the INI
file in section with class neuralmonkey.tf_manager.TensorFlowManager:

[session_manager]
class=tf_manager.TensorFlowManager
...

The session_manager configuration object is then referenced from the main section of the configuration:

[main]
tf_manager=<session_manager>
...

1.5.4 Training on GPU

You can easily switch between CPU and GPU version by running your experiments in virtual environment containing
either CPU or GPU version of TensorFlow without any changes to config files.

Similarly, standard techniques like setting the environment variable CUDA_VISIBLE_DEVICES can be used to con-
trol which GPUs are accessible for Neural Monkey.

1.5. Configuration 19

Neural Monkey Documentation, Release 0.1

By default, Neural Monkey prefers to allocate GPU memory stepwise only as needed. This can create problems with
memory fragmentation. If you know that you can allocate the whole memory at once add the following parameter the
session_manager section:

gpu_allow_growth=False

You can also restrict TensorFlow to use only a fixed proportion of GPU memory:

per_process_gpu_memory_fraction=0.65

This parameter tells TensorFlow to use only 65% of GPU memory.

With the default gpu_allow_growth=True, it makes sense to monitor memory consumption. Neural Monkey
can include a short summary total GPU memory used in the periodic log line. Just set:

report_gpu_memory_consumption=True

The log line will then contain the information like: MiB:0:7971/8113,1:4283/8113. This particular message
means that there are two GPU cards and the one indexed 1 has 4283 out of the total 8113 MiB occupied. Note that the
information reports all GPUs on the machine, regardless CUDA_VISIBLE_DEVICES.

1.5.5 Training on CPUs

TensorFlow Manager settings also affect training on CPUs.

The line:

num_threads=4

indicates that 4 CPUs should be used for TensorFlow computations.

1.6 API Documentation

1.6.1 neuralmonkey package

The neuralmonkey package is the root package of this project.

Sub-modules

20 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey

neuralmonkey package

Subpackages

neuralmonkey.attention package

Submodules

neuralmonkey.attention.base_attention module

Decoding functions using multiple attentions for RNN decoders.

See http://arxiv.org/abs/1606.07481

The attention mechanisms used in Neural Monkey are inherited from the BaseAttention class defined in this
module.

Each attention object has the attention function which operates on the attention_states tensor. The atten-
tion function receives the query tensor, the decoder previous state and input, and its inner state, which could bear an
arbitrary structure of information. The default structure for this is the AttentionLoopState, which contains a
growing array of attention distributions and context vectors in time. That’s why there is the initial_loop_state
function in the BaseAttention class.

Mainly for illustration purposes, the attention objects can keep their histories, which is a dictionary populated with
attention distributions in time for every decoder, that used this attention object. This is because for example the
recurrent decoder is can be run twice for each sentence - once in the training mode, in which the decoder gets the
reference tokens on the input, and once in the running mode, in which it gets its own outputs. The histories object
is constructed after the decoding and its construction should be triggered manually from the decoder by calling the
finalize_loop method.

class neuralmonkey.attention.base_attention.AttentionLoopState(contexts, weights)
Bases: tuple

contexts
Alias for field number 0

weights
Alias for field number 1

class neuralmonkey.attention.base_attention.BaseAttention(name: str,
save_checkpoint: str =
None, load_checkpoint: str
= None)→ None

Bases: neuralmonkey.model.model_part.ModelPart

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: typing.Any,
step: tensorflow.python.framework.ops.Tensor) → typ-
ing.Tuple[tensorflow.python.framework.ops.Tensor, typing.Any]

Get context vector for a given query.

context_vector_size

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

1.6. API Documentation 21

http://arxiv.org/abs/1606.07481

Neural Monkey Documentation, Release 0.1

finalize_loop(key: str, last_loop_state: typing.Any)→ None

histories

initial_loop_state()→ typing.Any
Get initial loop state for the attention object.

visualize_attention(key: str)→ None

neuralmonkey.attention.base_attention.empty_attention_loop_state() → neural-
monkey.attention.base_attention.AttentionLoopState

Create an empty attention loop state.

The attention loop state is a technical object for storing the attention distributions and the context vectors in
time. It is used with the tf.while_loop dynamic implementation of the decoder.

This function returns an empty attention loop state which means there are two empty arrays, one for attention
distributions in time, and one for the attention context vectors in time.

neuralmonkey.attention.base_attention.get_attention_mask(encoder: typ-
ing.Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful])
→ typ-
ing.Union[tensorflow.python.framework.ops.Tensor,
NoneType]

neuralmonkey.attention.base_attention.get_attention_states(encoder: typ-
ing.Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful])
→ tensor-
flow.python.framework.ops.Tensor

neuralmonkey.attention.combination module

Attention combination strategies.

This modules implements attention combination strategies for multi-encoder scenario when we may want to combine
the hidden states of the encoders in more complicated fashion.

Currently there are two attention combination strategies flat and hierarchical (see paper Attention Combination Strate-
gies for Multi-Source Sequence-to-Sequence Learning).

The combination strategies may use the sentinel mechanism which allows the decoder not to attend to the, and extract
information on its own hidden state (see paper Knowing when to Look: Adaptive Attention via a Visual Sentinel for
Image Captioning).

22 Chapter 1. Getting Started

https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf

Neural Monkey Documentation, Release 0.1

class neuralmonkey.attention.combination.FlatMultiAttention(name: str, en-
coders: typ-
ing.List[typing.Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful]],
atten-
tion_state_size: int,
share_attn_projections:
bool = False,
use_sentinels:
bool = False,
save_checkpoint: str =
None, load_checkpoint:
str = None)→ None

Bases: neuralmonkey.attention.combination.MultiAttention

Flat attention combination strategy.

Using this attention combination strategy, hidden states of the encoders are first projected to the same space
(different projection for different encoders) and then we compute a joint distribution over all the hidden states.
The context vector is then a weighted sum of another / then projection of the encoders hidden states. The sentinel
vector can be added as an additional hidden state.

See equations 8 to 10 in the Attention Combination Strategies paper.

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: neural-
monkey.attention.base_attention.AttentionLoopState, step: tensor-
flow.python.framework.ops.Tensor)→ typing.Tuple[tensorflow.python.framework.ops.Tensor,
neuralmonkey.attention.base_attention.AttentionLoopState]

context_vector_size

finalize_loop(key: str, last_loop_state: neuralmonkey.attention.base_attention.AttentionLoopState)
→ None

get_encoder_projections(scope)

initial_loop_state()→ neuralmonkey.attention.base_attention.AttentionLoopState

class neuralmonkey.attention.combination.HierarchicalLoopState(child_loop_states,
loop_state)

Bases: tuple

child_loop_states
Alias for field number 0

loop_state
Alias for field number 1

1.6. API Documentation 23

Neural Monkey Documentation, Release 0.1

class neuralmonkey.attention.combination.HierarchicalMultiAttention(name:
str, atten-
tions: typ-
ing.List[neuralmonkey.attention.base_attention.BaseAttention],
atten-
tion_state_size:
int,
use_sentinels:
bool,
share_attn_projections:
bool,
save_checkpoint:
str = None,
load_checkpoint:
str = None)
→ None

Bases: neuralmonkey.attention.combination.MultiAttention

Hierarchical attention combination.

Hierarchical attention combination strategy first computes the context vector for each encoder separately using
whatever attention type the encoders have. After that it computes a second attention over the resulting context
vectors and optionally the sentinel vector.

See equations 6 and 7 in the Attention Combination Strategies paper.

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: neural-
monkey.attention.combination.HierarchicalLoopState, step: tensor-
flow.python.framework.ops.Tensor)→ typing.Tuple[tensorflow.python.framework.ops.Tensor,
neuralmonkey.attention.combination.HierarchicalLoopState]

context_vector_size

finalize_loop(key: str, last_loop_state: typing.Any)→ None

initial_loop_state()→ neuralmonkey.attention.combination.HierarchicalLoopState

class neuralmonkey.attention.combination.MultiAttention(name: str, atten-
tion_state_size: int,
share_attn_projections: bool
= False, use_sentinels: bool =
False, save_checkpoint: str =
None, load_checkpoint: str =
None)→ None

Bases: neuralmonkey.attention.base_attention.BaseAttention

Base class for attention combination.

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: typing.Any,
step: tensorflow.python.framework.ops.Tensor) → typ-
ing.Tuple[tensorflow.python.framework.ops.Tensor, typing.Any]

Get context vector for given decoder state.

attn_size

24 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.attention.coverage module

Coverage attention introduced in Tu et al. (2016).

See arxiv.org/abs/1601.04811

The CoverageAttention class inherites from the basic feed-forward attention introduced by Bahdanau et al. (2015)

class neuralmonkey.attention.coverage.CoverageAttention(name: str, encoder: typ-
ing.Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful],
dropout_keep_prob: float =
1.0, state_size: int = None,
max_fertility: int = 5,
save_checkpoint: str = None,
load_checkpoint: str = None)
→ None

Bases: neuralmonkey.attention.feed_forward.Attention

get_energies(y: tensorflow.python.framework.ops.Tensor, weights_in_time: tensor-
flow.python.ops.tensor_array_ops.TensorArray)

neuralmonkey.attention.feed_forward module

The feed-forward attention mechanism.

This is the attention mechanism used in Bahdanau et al. (2015)

See arxiv.org/abs/1409.0473

class neuralmonkey.attention.feed_forward.Attention(name: str, encoder: typ-
ing.Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful],
dropout_keep_prob: float =
1.0, state_size: int = None,
save_checkpoint: str = None,
load_checkpoint: str = None) →
None

Bases: neuralmonkey.attention.base_attention.BaseAttention

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: neural-
monkey.attention.base_attention.AttentionLoopState, step: tensor-
flow.python.framework.ops.Tensor)→ typing.Tuple[tensorflow.python.framework.ops.Tensor,
neuralmonkey.attention.base_attention.AttentionLoopState]

attention_mask

attention_states

bias_term

context_vector_size

finalize_loop(key: str, last_loop_state: neuralmonkey.attention.base_attention.AttentionLoopState)
→ None

get_energies(y, _)

1.6. API Documentation 25

Neural Monkey Documentation, Release 0.1

hidden_features

initial_loop_state()→ neuralmonkey.attention.base_attention.AttentionLoopState

key_projection_matrix

projection_bias_vector

query_projection_matrix

similarity_bias_vector

state_size

neuralmonkey.attention.scaled_dot_product module

The scaled dot-product attention mechanism defined in Vaswani et al. (2017).

The attention energies are computed as dot products between the query vector and the key vector. The query vector is
scaled down by the square root of its dimensionality. This attention function has no trainable parameters.

See arxiv.org/abs/1706.03762

class neuralmonkey.attention.scaled_dot_product.MultiHeadAttention(name: str,
n_heads: int,
keys_encoder:
typ-
ing.Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful],
val-
ues_encoder:
typ-
ing.Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful]
= None,
dropout_keep_prob:
float = 1.0,
save_checkpoint:
str = None,
load_checkpoint:
str = None)
→ None

Bases: neuralmonkey.attention.base_attention.BaseAttention

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: neural-
monkey.attention.scaled_dot_product.MultiHeadLoopStateTA,
step: tensorflow.python.framework.ops.Tensor) → typ-
ing.Tuple[tensorflow.python.framework.ops.Tensor, neural-
monkey.attention.scaled_dot_product.MultiHeadLoopStateTA]

attention_single_head(query: tensorflow.python.framework.ops.Tensor,
keys: tensorflow.python.framework.ops.Tensor, val-
ues: tensorflow.python.framework.ops.Tensor) → typ-
ing.Tuple[tensorflow.python.framework.ops.Tensor, tensor-
flow.python.framework.ops.Tensor]

26 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

context_vector_size

finalize_loop(key: str, last_loop_state: neuralmonkey.attention.scaled_dot_product.MultiHeadLoopStateTA)
→ None

initial_loop_state()→ neuralmonkey.attention.scaled_dot_product.MultiHeadLoopStateTA

visualize_attention(key: str)→ None

class neuralmonkey.attention.scaled_dot_product.MultiHeadLoopStateTA(contexts,
head_weights)

Bases: tuple

contexts
Alias for field number 0

head_weights
Alias for field number 1

class neuralmonkey.attention.scaled_dot_product.ScaledDotProdAttention(name:
str,
keys_encoder:
typ-
ing.Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful],
val-
ues_encoder:
typ-
ing.Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful]
= None,
dropout_keep_prob:
float
= 1.0,
save_checkpoint:
str =
None,
load_checkpoint:
str =
None)
→
None

Bases: neuralmonkey.attention.scaled_dot_product.MultiHeadAttention

Module contents

neuralmonkey.config package

Submodules

neuralmonkey.config.builder module

Configuration Object Builder.

This module is responsible for instantiating objects specified by the experiment configuration.

1.6. API Documentation 27

Neural Monkey Documentation, Release 0.1

class neuralmonkey.config.builder.ClassSymbol(string: str)→ None
Bases: object

Represents a class (or other callable) in configuration.

create()→ typing.Any

class neuralmonkey.config.builder.ObjectRef(expression: str)→ None
Bases: object

Represents a named object or its attribute in configuration.

bind(value: typing.Any)

target

neuralmonkey.config.builder.build_config(config_dicts: typing.Dict[str, typing.Any], ig-
nore_names: typing.Set[str], warn_unused: bool
= False)→ typing.Dict[str, typing.Any]

Build the model from the configuration.

Parameters

• config_dicts – The parsed configuration file

• ignore_names – A set of names that should be ignored during the loading.

• warn_unused – Emit a warning if there are unused sections.

neuralmonkey.config.builder.build_object(value: str, all_dicts: typing.Dict[str, typing.Any],
existing_objects: typing.Dict[str, typing.Any],
depth: int)→ typing.Any

Build an object from config dictionary of its arguments.

Works recursively.

Parameters

• value – Value that should be resolved (either a literal value or a config section name)

• all_dicts – Configuration dictionaries used to find configuration of unconstructed ob-
jects.

• existing_objects – Dictionary of already constructed objects.

• ignore_names – Set of names that shoud be ignored.

• depth – The current depth of recursion. Used to prevent an infinite

• recursion. –

neuralmonkey.config.builder.instantiate_class(name: str, all_dicts: typing.Dict[str,
typing.Any], existing_objects: typ-
ing.Dict[str, typing.Any], depth: int) →
typing.Any

Instantiate a class from the configuration.

Arguments: see help(build_object)

neuralmonkey.config.configuration module

class neuralmonkey.config.configuration.Configuration
Bases: object

Configuration loader.

28 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

Loads the configuration file in an analogical way the python’s argparse.ArgumentParser works.

add_argument(name: str, required: bool = False, default: typing.Any = None, cond: typ-
ing.Callable[[typing.Any], bool] = None)→ None

build_model(warn_unused=False)→ None

ignore_argument(name: str)→ None

load_file(path: str, changes: typing.Union[typing.List[str], NoneType] = None)→ None

make_namespace(d_obj)→ argparse.Namespace

save_file(path: str)→ None

neuralmonkey.config.exceptions module

Module that contains exceptions handled in config parsing and loading.

exception neuralmonkey.config.exceptions.ConfigBuildException(object_name: str,
original_exception:
Exception)→ None

Bases: Exception

Exception caused by error in loading the model.

exception neuralmonkey.config.exceptions.ConfigInvalidValueException(value:
typing.Any,
message:
str) →
None

Bases: Exception

exception neuralmonkey.config.exceptions.IniError(line: int, message: str, original_exc:
typing.Union[Exception, NoneType] =
None)→ None

Bases: Exception

Exception caused by error in INI file syntax.

neuralmonkey.config.parsing module

Module responsible for INI parsing.

neuralmonkey.config.parsing.parse_file(config_file: typing.Iterable[str], changes: typ-
ing.Union[typing.Iterable[str], NoneType] = None)
→ typing.Tuple[typing.Dict[str, typing.Any], typ-
ing.Dict[str, typing.Any]]

Parse an INI file and creates all values.

neuralmonkey.config.parsing.write_file(config_dict: typing.Dict[str, typing.Any], config_file:
typing.IO[str])→ None

neuralmonkey.config.utils module

Utilities.

This module contains helper functions that are suppoosed to be called from the configuration file because calling the
functions or the class constructors directly would be inconvinent or impossible.

1.6. API Documentation 29

Neural Monkey Documentation, Release 0.1

neuralmonkey.config.utils.adadelta_optimizer(**kwargs) → tensor-
flow.python.training.adadelta.AdadeltaOptimizer

neuralmonkey.config.utils.adam_optimizer(learning_rate: float = 0.0001) → tensor-
flow.python.training.adam.AdamOptimizer

neuralmonkey.config.utils.deprecated(func: typing.Callable[..., T])→ typing.Callable[..., T]

neuralmonkey.config.utils.variable(initial_value=0, trainable: bool = False, **kwargs) →
tensorflow.python.ops.variables.Variable

Module contents

neuralmonkey.decoders package

Submodules

neuralmonkey.decoders.beam_search_decoder module

Beam search decoder.

This module implements the beam search algorithm for the recurrent decoder.

As well as the recurrent decoder, this decoder works dynamically, which means it uses the tf.while_loop function
conditioned on both maximum output length and list of finished hypotheses.

The beam search decoder works by appending data from SearchStepOutput objects to a
SearchStepOutputTA object. The SearchStepOutput object stores information about the hypotheses
in the beam. Each hypothesis keeps its score, its final token, and a pointer to a “parent” hypothesis, which is a
one-token-shorter hypothesis which shares the tokens with the child hypothesis.

For the beam search decoder to work, it must keep an inner state which stores information about hypotheses in the
beam. It is an object of type SearchState which stores, for each hypothesis, its sum of log probabilities of the
tokens, its length, finished flag, ID of the last token, and the last decoder and attention states.

There is another inner state object here, the BeamSearchLoopState. It is a technical structure used with the tf.
while_loop function. It stores all the previously mentioned information, plus the decoder LoopState, which is
used in the decoder when its own tf.while_loop function is used - this is not the case when using beam search
because we want to run the decoder’s steps manually.

class neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder(name: str, par-
ent_decoder:
neural-
monkey.decoders.decoder.Decoder,
beam_size: int,
length_normalization:
float,
max_steps:
int = None,
save_checkpoint:
str = None,
load_checkpoint:
str = None)→
None

Bases: neuralmonkey.model.model_part.ModelPart

In-graph beam search for batch size 1.

30 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

The hypothesis scoring algorithm is taken from https://arxiv.org/pdf/1609.08144.pdf. Length normalization is
parameter alpha from equation 14.

beam_size

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

Populate the feed dictionary for the decoder object.

Parameters

• dataset – The dataset to use for the decoder.

• train – Boolean flag, telling whether this is a training run

get_body()→ typing.Callable
Return a body function for tf.while_loop.

get_initial_loop_state()→ neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState

vocabulary

class neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState(bs_state,
bs_output,
de-
coder_loop_state)

Bases: tuple

bs_output
Alias for field number 1

bs_state
Alias for field number 0

decoder_loop_state
Alias for field number 2

class neuralmonkey.decoders.beam_search_decoder.SearchState(logprob_sum, lengths,
finished, last_word_ids,
last_state, last_attns)

Bases: tuple

finished
Alias for field number 2

last_attns
Alias for field number 5

last_state
Alias for field number 4

last_word_ids
Alias for field number 3

lengths
Alias for field number 1

logprob_sum
Alias for field number 0

class neuralmonkey.decoders.beam_search_decoder.SearchStepOutput(scores, par-
ent_ids, to-
ken_ids)

Bases: tuple

1.6. API Documentation 31

https://arxiv.org/pdf/1609.08144.pdf

Neural Monkey Documentation, Release 0.1

parent_ids
Alias for field number 1

scores
Alias for field number 0

token_ids
Alias for field number 2

class neuralmonkey.decoders.beam_search_decoder.SearchStepOutputTA(scores, par-
ent_ids,
token_ids)

Bases: tuple

parent_ids
Alias for field number 1

scores
Alias for field number 0

token_ids
Alias for field number 2

neuralmonkey.decoders.classifier module

class neuralmonkey.decoders.classifier.Classifier(name: str, encoders: typ-
ing.List[neuralmonkey.model.stateful.Stateful],
vocabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str, layers: typ-
ing.List[int], activation_fn: typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor] =
<function relu>, dropout_keep_prob:
float = 0.5, save_checkpoint: typ-
ing.Union[str, NoneType] = None,
load_checkpoint: typing.Union[str,
NoneType] = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart

A simple MLP classifier over encoders.

The API pretends it is an RNN decoder which always generates a sequence of length exactly one.

cost

decoded

decoded_logits

decoded_seq

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

gt_inputs

loss_with_decoded_ins

loss_with_gt_ins

32 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

runtime_logprobs

runtime_loss

train_loss

train_mode

neuralmonkey.decoders.ctc_decoder module

class neuralmonkey.decoders.ctc_decoder.CTCDecoder(name: str, encoder: typ-
ing.Any, vocabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str, merge_repeated_targets:
bool = False,
merge_repeated_outputs: bool
= True, beam_width: int = 1,
save_checkpoint: typing.Union[str,
NoneType] = None, load_checkpoint:
typing.Union[str, NoneType] =
None)→ None

Bases: neuralmonkey.model.model_part.ModelPart

Connectionist Temporal Classification.

See tf.nn.ctc_loss, tf.nn.ctc_greedy_decoder etc.

cost

decoded

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

input_lengths

logits

runtime_loss

train_loss

train_mode

train_targets

1.6. API Documentation 33

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.decoder module

class neuralmonkey.decoders.decoder.Decoder(encoders: typ-
ing.List[neuralmonkey.model.stateful.Stateful],
vocabulary: neural-
monkey.vocabulary.Vocabulary, data_id:
str, name: str, max_output_len: int,
dropout_keep_prob: float = 1.0,
rnn_size: int = None, embedding_size:
int = None, output_projection: typ-
ing.Union[typing.Tuple[typing.Callable[[tensorflow.python.framework.ops.Tensor,
tensorflow.python.framework.ops.Tensor, typ-
ing.List[tensorflow.python.framework.ops.Tensor],
tensorflow.python.framework.ops.Tensor], ten-
sorflow.python.framework.ops.Tensor], int], typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor,
tensorflow.python.framework.ops.Tensor, typ-
ing.List[tensorflow.python.framework.ops.Tensor],
tensorflow.python.framework.ops.Tensor],
tensorflow.python.framework.ops.Tensor]]
= None, encoder_projection: typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor,
int, typing.List[neuralmonkey.model.stateful.Stateful]],
tensorflow.python.framework.ops.Tensor]
= None, attentions: typ-
ing.List[neuralmonkey.attention.base_attention.BaseAttention]
= None, embeddings_source: neural-
monkey.model.sequence.EmbeddedSequence
= None, attention_on_input: bool = True,
rnn_cell: str = ‘GRU’, conditional_gru:
bool = False, save_checkpoint: str = None,
load_checkpoint: str = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart

Decoder class.

A class that manages parts of the computation graph that are used for the decoding.

batch_size

cost

decoded

decoding_b

decoding_w

embed_input_symbol(*args)→ tensorflow.python.framework.ops.Tensor

embedding_matrix
Variables and operations for embedding of input words.

If we are reusing word embeddings, this function takes the embedding matrix from the first encoder

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

Populate the feed dictionary for the decoder object.

Parameters

34 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• dataset – The dataset to use for the decoder.

• train – Boolean flag, telling whether this is a training run

get_body(train_mode: bool, sample: bool = False)→ typing.Callable

get_initial_loop_state()→ neuralmonkey.decoders.decoder.LoopState

go_symbols

initial_state
Compute initial decoder state.

The part of the computation graph that computes the initial state of the decoder.

input_plus_attention(*args)→ tensorflow.python.framework.ops.Tensor
Merge input and previous attentions.

Input and previous attentions are merged into a single vector of the size fo embedding.

loop_continue_criterion(*args)→ tensorflow.python.framework.ops.Tensor

runtime_logits

runtime_logprobs

runtime_loop_result

runtime_loss

runtime_mask

runtime_rnn_states

train_inputs

train_logits

train_logprobs

train_loss

train_mode

train_padding

train_xents

class neuralmonkey.decoders.decoder.LoopState(step, input_symbol, train_inputs,
prev_rnn_state, prev_rnn_output,
rnn_outputs, prev_logits, logits,
prev_contexts, mask, finished, atten-
tion_loop_states)

Bases: tuple

attention_loop_states
Alias for field number 11

finished
Alias for field number 10

input_symbol
Alias for field number 1

logits
Alias for field number 7

1.6. API Documentation 35

Neural Monkey Documentation, Release 0.1

mask
Alias for field number 9

prev_contexts
Alias for field number 8

prev_logits
Alias for field number 6

prev_rnn_output
Alias for field number 4

prev_rnn_state
Alias for field number 3

rnn_outputs
Alias for field number 5

step
Alias for field number 0

train_inputs
Alias for field number 2

neuralmonkey.decoders.encoder_projection module

Encoder Projection Module.

This module contains different variants of projection of encoders into the initial state of the decoder.

Encoder projections are specified in the configuration file. Each encoder projection function has a unified type
EncoderProjection, which is a callable that takes three arguments:

1. train_mode – boolean tensor specifying whether the train mode is on

2. rnn_size – the size of the resulting initial state

3. encoders – a list of Stateful objects used as the encoders.

To enable further parameterization of encoder projection functions, one can use higher-order functions.

neuralmonkey.decoders.encoder_projection.concat_encoder_projection(train_mode:
tensor-
flow.python.framework.ops.Tensor,
rnn_size:
int =
None,
encoders:
typ-
ing.List[neuralmonkey.model.stateful.Stateful]
= None)
→ tensor-
flow.python.framework.ops.Tensor

Concatenate the encoded values of the encoders.

36 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.encoder_projection.empty_initial_state(train_mode:
tensor-
flow.python.framework.ops.Tensor,
rnn_size: int,
encoders: typ-
ing.List[neuralmonkey.model.stateful.Stateful]
= None)→ tensor-
flow.python.framework.ops.Tensor

Return an empty vector.

neuralmonkey.decoders.encoder_projection.linear_encoder_projection(dropout_keep_prob:
float)
→ typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor,
int, typ-
ing.List[neuralmonkey.model.stateful.Stateful]],
tensor-
flow.python.framework.ops.Tensor]

Return a linear encoder projection.

Return a projection function which applies dropout on concatenated encoder final states and returns a linear
projection to a rnn_size-sized tensor.

Parameters dropout_keep_prob – The dropout keep probability

neuralmonkey.decoders.encoder_projection.nematus_projection(dropout_keep_prob:
float = 1.0) → typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor,
int, typ-
ing.List[neuralmonkey.model.stateful.Stateful]],
tensor-
flow.python.framework.ops.Tensor]

Return encoder projection used in Nematus.

The initial state is a dense projection with tanh activation computed on the averaged states of the encoders.
Dropout is applied to the means (before the projection).

Parameters dropout_keep_prob – The dropout keep probability.

neuralmonkey.decoders.output_projection module

Output Projection Module.

This module contains different variants of projection functions of decoder outputs into the logit function inputs.

Output projections are specified in the configuration file. Each output projection function has a unified type
OutputProjection, which is a callable that takes four arguments and returns a tensor:

1. prev_state – the hidden state of the decoder.

2. prev_output – embedding of the previously decoded word (or train input)

3. ctx_tensots – a list of context vectors (for each attention object)

To enable further parameterization of output projection functions, one can use higher-order functions.

1.6. API Documentation 37

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.output_projection.maxout_output(maxout_size: int) → typ-
ing.Tuple[typing.Callable[[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
typ-
ing.List[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
int]

Apply maxout.

Compute RNN output out of the previous state and output, and the context tensors returned from attention
mechanisms, as described in the article

This function corresponds to the equations for computation the t_tilde in the Bahdanau et al. (2015) paper, on
page 14, with the maxout projection, before the last linear projection.

Parameters maxout_size – The size of the hidden maxout layer in the deep output

Returns Returns the maxout projection of the concatenated inputs

neuralmonkey.decoders.output_projection.mlp_output(layer_sizes: typ-
ing.List[int], activation: typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor]
= <function tanh>,
dropout_keep_prob:
float = 1.0) → typ-
ing.Tuple[typing.Callable[[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
typ-
ing.List[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
int]

Apply a multilayer perceptron.

Compute RNN deep output using the multilayer perceptron with a specified activation function. (Pascanu et al.,
2013 [https://arxiv.org/pdf/1312.6026v5.pdf])

Parameters

• layer_sizes – A list of sizes of the hiddel layers of the MLP

• dropout_keep_prob – the dropout keep probability

• activation – The activation function to use in each layer.

38 Chapter 1. Getting Started

https://arxiv.org/pdf/1312.6026v5.pdf

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.output_projection.nematus_output(output_size: int,
dropout_keep_prob:
float = 1.0) → typ-
ing.Tuple[typing.Callable[[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
typ-
ing.List[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
int]

Apply nonlinear one-hidden-layer deep output.

Implementation consistent with Nematus. Can be used instead of (and is in theory equivalent to) nonlin-
ear_output.

Projects the RNN state, embedding of the previously outputted word, and concatenation of all context vectors
into a shared vector space, sums them up and apply a hyperbolic tangent activation function.

neuralmonkey.decoders.output_projection.nonlinear_output(output_size: int,
activation_fn: typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor]
= <function
tanh>) → typ-
ing.Tuple[typing.Callable[[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
typ-
ing.List[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
int]

1.6. API Documentation 39

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.sequence_labeler module

class neuralmonkey.decoders.sequence_labeler.SequenceLabeler(name: str, en-
coder: typ-
ing.Union[neuralmonkey.encoders.recurrent.RecurrentEncoder,
neural-
monkey.encoders.facebook_conv.SentenceEncoder],
vocabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str,
dropout_keep_prob:
float = 1.0,
save_checkpoint:
typing.Union[str,
NoneType] = None,
load_checkpoint:
typing.Union[str,
NoneType] = None)
→ None

Bases: neuralmonkey.model.model_part.ModelPart

Classifier assing a label to each encoder’s state.

cost

decoded

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

logits

logprobs

runtime_loss

train_loss

train_mode

train_targets

train_weights

40 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.sequence_regressor module

class neuralmonkey.decoders.sequence_regressor.SequenceRegressor(name: str,
encoders: typ-
ing.List[neuralmonkey.model.stateful.Stateful],
data_id: str,
layers: typ-
ing.List[int]
= None, acti-
vation_fn: typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor]
= <func-
tion relu>,
dropout_keep_prob:
float = 1.0, di-
mension: int = 1,
save_checkpoint:
str = None,
load_checkpoint:
str = None) →
None

Bases: neuralmonkey.model.model_part.ModelPart

A simple MLP regression over encoders.

The API pretends it is an RNN decoder which always generates a sequence of length exactly one.

cost

decoded

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

predictions

runtime_loss

train_inputs

train_loss

train_mode

1.6. API Documentation 41

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.word_alignment_decoder module

class neuralmonkey.decoders.word_alignment_decoder.WordAlignmentDecoder(encoder:
neu-
ral-
monkey.encoders.recurrent.RecurrentEncoder,
de-
coder:
neu-
ral-
monkey.decoders.decoder.Decoder,
data_id:
str,
name:
str)
→
None

Bases: neuralmonkey.model.model_part.ModelPart

A decoder that computes soft alignment from an attentive encoder.

Loss is computed as cross-entropy against a reference alignment.

alignment_target

cost

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

ref_alignment

Module contents

neuralmonkey.encoders package

Submodules

neuralmonkey.encoders.cnn_encoder module

CNN for image processing.

class neuralmonkey.encoders.cnn_encoder.CNNEncoder(name: str, data_id: str, convolu-
tions: typing.List[typing.Tuple[int,
int, typing.Union[int, NoneType]]],
image_height: int, image_width:
int, pixel_dim: int, fully_connected:
typing.Union[typing.List[int], None-
Type] = None, dropout_keep_prob:
float = 0.5, save_checkpoint: typ-
ing.Union[str, NoneType] = None,
load_checkpoint: typing.Union[str,
NoneType] = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
SpatialStatefulWithOutput

42 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

An image encoder.

It projects the input image through a serie of convolutioal operations. The projected image is vertically cut and
fed to stacked RNN layers which encode the image into a single vector.

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

image_input

image_processing_layers
Do all convolutions and return the last conditional map.

Applies convolutions on the input tensor with optional max pooling. All the intermediate layers are stored
in the image_processing_layers attribute. There is not dropout between the convolutional layers, by default
the activation function is ReLU.

output
Output vector of the CNN.

If there are specified some fully connected layers, there are applied on top of the last convolutional map.
Dropout is applied between all layers, default activation function is ReLU. There are only projection layers,
no softmax is applied.

If there is fully_connected layer specified, average-pooled last convolutional map is used as a vector output.

spatial_mask

spatial_states

train_mode

neuralmonkey.encoders.facebook_conv module

From the paper Convolutional Sequence to Sequence Learning.

http://arxiv.org/abs/1705.03122

class neuralmonkey.encoders.facebook_conv.SentenceEncoder(name: str, in-
put_sequence: neural-
monkey.model.sequence.EmbeddedSequence,
conv_features: int,
encoder_layers: int,
kernel_width: int = 5,
dropout_keep_prob: float
= 1.0, save_checkpoint: str
= None, load_checkpoint:
str = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

order_embeddings

ordered_embedded_inputs

output

temporal_mask

temporal_states

1.6. API Documentation 43

http://arxiv.org/abs/1705.03122

Neural Monkey Documentation, Release 0.1

train_mode

neuralmonkey.encoders.imagenet_encoder module

Pre-trained ImageNet networks.

class neuralmonkey.encoders.imagenet_encoder.ImageNet(name: str, data_id: str, net-
work_type: str, attention_layer:
typing.Union[str, NoneType]
= None, fine_tune: bool =
False, encoded_layer: typ-
ing.Union[str, NoneType] =
None, load_checkpoint: typ-
ing.Union[str, NoneType] =
None, save_checkpoint: typ-
ing.Union[str, NoneType] =
None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
SpatialStatefulWithOutput

Pre-trained ImageNet network.

HEIGHT = 224

WIDTH = 224

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

input_image

output

spatial_mask

spatial_states

neuralmonkey.encoders.numpy_encoder module

class neuralmonkey.encoders.numpy_encoder.PostCNNImageEncoder(name: str, in-
put_shape: typ-
ing.List[int], out-
put_shape: int,
data_id: str,
save_checkpoint:
typing.Union[str,
NoneType] = None,
load_checkpoint:
typing.Union[str,
NoneType] = None)
→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
SpatialStatefulWithOutput

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

output

44 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

spatial_mask

spatial_states

class neuralmonkey.encoders.numpy_encoder.VectorEncoder(name: str, dimension: int,
data_id: str, output_shape:
int = None, save_checkpoint:
str = None, load_checkpoint:
str = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
Stateful

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

output

neuralmonkey.encoders.raw_rnn_encoder module

class neuralmonkey.encoders.raw_rnn_encoder.RNNSpec(size, direction, cell_type)
Bases: tuple

cell_type
Alias for field number 2

direction
Alias for field number 1

size
Alias for field number 0

class neuralmonkey.encoders.raw_rnn_encoder.RawRNNEncoder(name: str, data_id:
str, input_size: int,
rnn_layers: typ-
ing.List[typing.Union[typing.Tuple[int],
typing.Tuple[int, str],
typing.Tuple[int, str,
str]]], max_input_len:
typing.Union[int,
NoneType] = None,
dropout_keep_prob: float
= 1.0, save_checkpoint:
typing.Union[str,
NoneType] = None,
load_checkpoint: typ-
ing.Union[str, NoneType]
= None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

A raw RNN encoder that gets input as a tensor.

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

Populate the feed dictionary with the encoder inputs.

Parameters

• dataset – The dataset to use

1.6. API Documentation 45

Neural Monkey Documentation, Release 0.1

• train – Boolean flag telling whether it is training time

output

temporal_mask

temporal_states

neuralmonkey.encoders.recurrent module

class neuralmonkey.encoders.recurrent.FactoredEncoder(name: str, vocabularies: typ-
ing.List[neuralmonkey.vocabulary.Vocabulary],
data_ids: typing.List[str], em-
bedding_sizes: typing.List[int],
rnn_size: int, max_input_len:
int = None, dropout_keep_prob:
float = 1.0, rnn_cell: str =
‘GRU’, output_size: int = None,
save_checkpoint: str = None,
load_checkpoint: str = None)→
None

Bases: neuralmonkey.encoders.recurrent.RecurrentEncoder

class neuralmonkey.encoders.recurrent.RecurrentEncoder(name: str, in-
put_sequence: neural-
monkey.model.sequence.Sequence,
rnn_size: int,
dropout_keep_prob: float
= 1.0, rnn_cell: str = ‘GRU’,
output_size: int = None,
save_checkpoint: str = None,
load_checkpoint: str = None)
→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

bidirectional_rnn

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

output

states

states_mask

temporal_mask

temporal_states

train_mode

46 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

class neuralmonkey.encoders.recurrent.SentenceEncoder(name: str, vocabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str, embedding_size:
int, rnn_size: int, max_input_len:
int = None, dropout_keep_prob:
float = 1.0, rnn_cell: str =
‘GRU’, output_size: int = None,
save_checkpoint: str = None,
load_checkpoint: str = None)→
None

Bases: neuralmonkey.encoders.recurrent.RecurrentEncoder

neuralmonkey.encoders.sentence_cnn_encoder module

Encoder for sentences withou explicit segmentation.

class neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder(name:
str, in-
put_sequence:
neural-
monkey.model.sequence.Sequence,
seg-
ment_size:
int, high-
way_depth:
int,
rnn_size:
int, fil-
ters: typ-
ing.List[typing.Tuple[int,
int]],
dropout_keep_prob:
float = 1.0,
use_noisy_activations:
bool =
False,
save_checkpoint:
typ-
ing.Union[str,
NoneType]
= None,
load_checkpoint:
typ-
ing.Union[str,
NoneType]
= None) →
None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

Recurrent over Convolutional Encoder.

Encoder processing a sentence using a CNN then running a bidirectional RNN on the result.

Based on: Jason Lee, Kyunghyun Cho, Thomas Hofmann: Fully Character-Level Neural Machine Translation
without Explicit Segmentation.

1.6. API Documentation 47

Neural Monkey Documentation, Release 0.1

See https://arxiv.org/pdf/1610.03017.pdf

bidirectional_rnn

cnn_encoded
1D convolution with max-pool that processing characters.

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

Populate the feed dictionary with the encoder inputs.

Parameters

• dataset – The dataset to use

• train – Boolean flag telling whether it is training time

highway_layer
Highway net projection following the CNN.

output

rnn_cells() → typing.Tuple[tensorflow.python.ops.rnn_cell_impl.RNNCell, tensor-
flow.python.ops.rnn_cell_impl.RNNCell]

Return the graph template to for creating RNN memory cells.

temporal_mask

temporal_states

train_mode

neuralmonkey.encoders.sequence_cnn_encoder module

Encoder for sentence classification with 1D convolutions and max-pooling.

48 Chapter 1. Getting Started

https://arxiv.org/pdf/1610.03017.pdf

Neural Monkey Documentation, Release 0.1

class neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder(name: str,
vocabulary:
neural-
monkey.vocabulary.Vocabulary,
data_id: str,
embed-
ding_size:
int, fil-
ters: typ-
ing.List[typing.Tuple[int,
int]],
max_input_len:
typ-
ing.Union[int,
NoneType]
= None,
dropout_keep_prob:
float = 1.0,
save_checkpoint:
typ-
ing.Union[str,
NoneType]
= None,
load_checkpoint:
typ-
ing.Union[str,
NoneType]
= None) →
None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
Stateful

Encoder processing a sequence using a CNN.

embedded_inputs

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

Populate the feed dictionary with the encoder inputs.

Encoder input placeholders:

encoder_input: Stores indices to the vocabulary, shape (batch, time)

encoder_padding: Stores the padding (ones and zeros, indicating valid words and positions
after the end of sentence, shape (batch, time)

train_mode: Boolean scalar specifying the mode (train vs runtime)

Parameters

• dataset – The dataset to use

• train – Boolean flag telling whether it is training time

input_mask

inputs

output

1.6. API Documentation 49

Neural Monkey Documentation, Release 0.1

train_mode

Module contents

neuralmonkey.evaluators package

Submodules

neuralmonkey.evaluators.accuracy module

class neuralmonkey.evaluators.accuracy.AccuracyEvaluator(name: str = ‘Accuracy’) →
None

Bases: object

static compare_scores(score1: float, score2: float)→ int

class neuralmonkey.evaluators.accuracy.AccuracySeqLevelEvaluator(name: str =
‘AccuracySe-
qLevel’) →
None

Bases: object

static compare_scores(score1: float, score2: float)→ int

neuralmonkey.evaluators.average module

class neuralmonkey.evaluators.average.AverageEvaluator(name: str)→ None
Bases: object

Just average the numeric output of a runner.

neuralmonkey.evaluators.beer module

class neuralmonkey.evaluators.beer.BeerWrapper(wrapper: str, name: str = ‘BEER’, encod-
ing: str = ‘utf-8’)→ None

Bases: object

Wrapper for BEER scorer.

Paper: http://aclweb.org/anthology/D14-1025 Code: https://github.com/stanojevic/beer

serialize_to_bytes(sentences: typing.List[typing.List[str]])→ bytes

neuralmonkey.evaluators.bleu module

class neuralmonkey.evaluators.bleu.BLEUEvaluator(n: int = 4, deduplicate: bool = False,
name: typing.Union[str, NoneType] =
None)→ None

Bases: object

static bleu(hypotheses: typing.List[typing.List[str]], references: typ-
ing.List[typing.List[typing.List[str]]], ngrams: int = 4, case_sensitive: bool = True)

Compute BLEU on a corpus with multiple references.

The n-grams are uniformly weighted.

50 Chapter 1. Getting Started

http://aclweb.org/anthology/D14-1025
https://github.com/stanojevic/beer

Neural Monkey Documentation, Release 0.1

Default is to use smoothing as in reference implementation on: https://github.com/ufal/qtleap/blob/master/
cuni_train/bin/mteval-v13a.pl#L831-L873

Parameters

• hypotheses – List of hypotheses

• references – LIst of references. There can be more than one reference.

• ngrams – Maximum order of n-grams. Default 4.

• case_sensitive – Perform case-sensitive computation. Default True.

static compare_scores(score1: float, score2: float)→ int

static deduplicate_sentences(sentences: typing.List[typing.List[str]]) → typ-
ing.List[typing.List[str]]

static effective_reference_length(hypotheses: typing.List[typing.List[str]], references_list:
typing.List[typing.List[typing.List[str]]])→ int

Compute the effective reference corpus length.

The effective reference corpus length is based on best match length.

Parameters

• hypotheses – List of output sentences as lists of words

• references_list – List of lists of references (as lists of words)

static merge_max_counters(counters: typing.List[collections.Counter])→ collections.Counter
Merge counters using maximum values.

static minimum_reference_length(hypotheses: typing.List[typing.List[str]], references_list: typ-
ing.List[typing.List[str]])→ int

Compute the minimum reference corpus length.

The minimum reference corpus length is based on the shortest reference sentence length.

Parameters

• hypotheses – List of output sentences as lists of words

• references_list – List of lists of references (as lists of words)

static modified_ngram_precision(hypotheses: typing.List[typing.List[str]], references_list: typ-
ing.List[typing.List[typing.List[str]]], n: int, case_sensitive:
bool)→ typing.Tuple[float, int]

Compute the modified n-gram precision on a list of sentences.

Parameters

• hypotheses – List of output sentences as lists of words

• references_list – List of lists of reference sentences (as lists of words)

• n – n-gram order

• case_sensitive – Whether to perform case-sensitive computation

static ngram_counts(sentence: typing.List[str], n: int, lowercase: bool, delimiter: str = ‘ ‘) → col-
lections.Counter

Get n-grams from a sentence.

Parameters

• sentence – Sentence as a list of words

• n – n-gram order

1.6. API Documentation 51

https://github.com/ufal/qtleap/blob/master/cuni_train/bin/mteval-v13a.pl#L831-L873
https://github.com/ufal/qtleap/blob/master/cuni_train/bin/mteval-v13a.pl#L831-L873

Neural Monkey Documentation, Release 0.1

• lowercase – Convert ngrams to lowercase

• delimiter – delimiter to use to create counter entries

neuralmonkey.evaluators.bleu_ref module

class neuralmonkey.evaluators.bleu_ref.BLEUReferenceImplWrapper(wrapper,
name=’BLEU’,
encoding=’utf-
8’)

Bases: object

Wrapper for TectoMT’s wrapper for reference NIST and BLEU scorer.

serialize_to_bytes(sentences: typing.List[typing.List[str]])→ bytes

neuralmonkey.evaluators.chrf module

class neuralmonkey.evaluators.chrf.ChrFEvaluator(n: int = 6, beta: float =
1, ignored_symbols: typ-
ing.Union[typing.List[str], NoneType]
= None, name: typing.Union[str,
NoneType] = None)→ None

Bases: object

Compute ChrF score.

See http://www.statmt.org/wmt15/pdf/WMT49.pdf

neuralmonkey.evaluators.edit_distance module

class neuralmonkey.evaluators.edit_distance.EditDistanceEvaluator(name: str
= ‘Edit dis-
tance’) →
None

Bases: object

static compare_scores(score1: float, score2: float)→ int

static ratio(str1: str, str2: str)→ float

neuralmonkey.evaluators.f1_bio module

class neuralmonkey.evaluators.f1_bio.F1Evaluator(name: str = ‘F1 measure’)→ None
Bases: object

F1 evaluator for BIO tagging, e.g. NP chunking.

The entities are annotated as beginning of the entity (B), continuation of the entity (I), the rest is outside the
entity (O).

static chunk2set(seq: typing.List[str])→ typing.Set[str]

static f1_score(decoded: typing.List[str], reference: typing.List[str])→ float

52 Chapter 1. Getting Started

http://www.statmt.org/wmt15/pdf/WMT49.pdf

Neural Monkey Documentation, Release 0.1

neuralmonkey.evaluators.gleu module

class neuralmonkey.evaluators.gleu.GLEUEvaluator(n: int = 4, deduplicate: bool = False,
name: typing.Union[str, NoneType] =
None)→ None

Bases: object

Sentence-level evaluation metric correlating with BLEU on corpus-level.

From “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Transla-
tion” by Wu et al. (https://arxiv.org/pdf/1609.08144v2.pdf)

GLEU is the minimum of recall and precision of all n-grams up to n in references and hypotheses.

Ngram counts are based on the bleu methods.

static gleu(hypotheses: typing.List[typing.List[str]], references: typ-
ing.List[typing.List[typing.List[str]]], ngrams: int = 4, case_sensitive: bool = True)
→ float

Compute GLEU on a corpus with multiple references (no smoothing).

Parameters

• hypotheses – List of hypotheses

• references – LIst of references. There can be more than one reference.

• ngrams – Maximum order of n-grams. Default 4.

• case_sensitive – Perform case-sensitive computation. Default True.

static total_precision_recall(hypotheses: typing.List[typing.List[str]], references_list:
typing.List[typing.List[typing.List[str]]], ngrams: int,
case_sensitive: bool)→ typing.Tuple[float, float]

Compute a modified n-gram precision and recall on a sentence list.

Parameters

• hypotheses – List of output sentences as lists of words

• references_list – List of lists of reference sentences (as lists of words)

• ngrams – n-gram order

• case_sensitive – Whether to perform case-sensitive computation

neuralmonkey.evaluators.mse module

class neuralmonkey.evaluators.mse.MeanSquaredErrorEvaluator(name: str = ‘Mean-
SquaredError’) →
None

Bases: object

static compare_scores(score1: float, score2: float)→ int

neuralmonkey.evaluators.multeval module

class neuralmonkey.evaluators.multeval.MultEvalWrapper(wrapper: str, name: str = ‘Mul-
tEval’, encoding: str = ‘utf-8’,
metric: str = ‘bleu’, language:
str = ‘en’)→ None

Bases: object

1.6. API Documentation 53

https://arxiv.org/pdf/1609.08144v2.pdf

Neural Monkey Documentation, Release 0.1

Wrapper for mult-eval’s reference BLEU and METEOR scorer.

serialize_to_bytes(sentences: typing.List[typing.List[str]])→ bytes

neuralmonkey.evaluators.ter module

class neuralmonkey.evaluators.ter.TEREvaluator(name: str = ‘TER’)→ None
Bases: object

Compute TER using the pyter library.

neuralmonkey.evaluators.wer module

class neuralmonkey.evaluators.wer.WEREvaluator(name: str = ‘WER’)→ None
Bases: object

Compute WER (word error rate, used in speech recognition).

Module contents

neuralmonkey.model package

Submodules

neuralmonkey.model.model_part module

Basic functionality of all model parts.

class neuralmonkey.model.model_part.ModelPart(name: str, save_checkpoint: str = None,
load_checkpoint: str = None)→ None

Bases: object

Base class of all model parts.

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

Prepare feed dicts for part’s placeholders from a dataset.

get_dependencies()→ typing.Set[typing.ModelPart]
Collect recusively all encoders and decoders.

load(session: tensorflow.python.client.session.Session)→ None
Load model part from a checkpoint file.

name
Name of the model part and its variable scope.

save(session: tensorflow.python.client.session.Session)→ None
Save model part to a checkpoint file.

use_scope()
Return a context manager.

Return a context manager that (re)opens the model part’s variable and name scope.

54 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.model.sequence module

Module which impements the sequence class and a few of its subclasses.

class neuralmonkey.model.sequence.EmbeddedFactorSequence(name: str, vocabularies: typ-
ing.List[neuralmonkey.vocabulary.Vocabulary],
data_ids: typ-
ing.List[str], embed-
ding_sizes: typing.List[int],
max_length: int = None,
add_start_symbol: bool =
False, add_end_symbol:
bool = False,
save_checkpoint: str =
None, load_checkpoint: str
= None)→ None

Bases: neuralmonkey.model.sequence.Sequence

A Sequence that stores one or more embedded inputs (factors).

data
Return the sequence data.

A 3D Tensor of shape (batch, time, dimension), where dimension is the sum of the embedding sizes
supplied to the constructor.

dimension
Return the sequence dimension.

The sum of the embedding sizes supplied to the constructor.

embedding_matrices
Return a list of embedding matrices for each factor.

feed_dict(dataset: neuralmonkey.dataset.Dataset, train: bool = False) → typ-
ing.Dict[tensorflow.python.framework.ops.Tensor, typing.Any]

Feed the placholders with the data.

Parameters

• dataset – The dataset.

• train – A flag whether the train mode is enabled.

Returns The constructed feed dictionary that contains the factor data and the mask.

input_factors
Return a list of 2D placeholders for each factor.

Each placeholder has shape (batch size, time).

mask
Return a 2D placeholder for the sequence mask.

This is shared across factors and must be the same for each of them.

tb_embedding_visualization(logdir: str, prj: <module ‘tensor-
flow.contrib.tensorboard.plugins.projector’ from
‘/home/docs/checkouts/readthedocs.org/user_builds/neural-
monkey/envs/0.2.3/lib/python3.5/site-
packages/tensorflow/contrib/tensorboard/plugins/projector/__init__.py’>)

Link embeddings with vocabulary wordlist.

1.6. API Documentation 55

Neural Monkey Documentation, Release 0.1

Used for tensorboard visualization.

Parameters

• logdir – directory where model is stored

• projector – TensorBoard projector for storing linking info.

class neuralmonkey.model.sequence.EmbeddedSequence(name: str, vocabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str, embedding_size:
int, max_length: int = None,
add_start_symbol: bool = False,
add_end_symbol: bool = False,
save_checkpoint: str = None,
load_checkpoint: str = None) →
None

Bases: neuralmonkey.model.sequence.EmbeddedFactorSequence

A sequence of embedded inputs (for a single factor).

data_id
Return the input data series indentifier.

embedding_matrix
Return the embedding matrix for the sequence.

inputs
Return a 2D placeholder for the sequence inputs.

vocabulary
Return the input vocabulary.

class neuralmonkey.model.sequence.Sequence(name: str, max_length: int = None,
save_checkpoint: str = None, load_checkpoint:
str = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart

Base class for a data sequence.

This class represents a batch of sequences of Tensors of possibly different lengths.

data
Return the sequence data.

A Tensor representing the data in the sequence. The first and second dimension correspond to batch size
and time respectively.

dimension
Return the sequence dimension.

The dimension of the sequence. For 3D sequences, this is the size of the last dimension of the data tensor.

lengths
Return the sequence lengths.

A 1D Tensor of type int32 that stores the lengths of the sequences in the batch.

mask
Return the sequence mask.

A 2D Tensor of type float32 and shape (batch size, time) that masks the sequences in the batch.

max_length
Return the maximum length of sequences in the data tensor.

56 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.model.stateful module

Module that provides classes that encapsulate model parts with states.

There are three classes: Stateful, TemporalStateful, and SpatialStateful.

Model parts that do not keep states in time but have a single tensor on the output should be instances of Stateful. Model
parts that keep their hidden states in a time-oriented list (e.g. recurrent encoder) should be instances of TemporalState-
ful. Model parts that keep the states in a 2D matrix (e.g. image encoders) should be instances of SpatialStateful.

There are also classes that inherit from both stateful and temporal or spatial stateful (e.g. TemporalStatefulWithOutput)
that can be used for model parts that satisfy more requirements (e.g. recurrent encoder).

class neuralmonkey.model.stateful.SpatialStateful
Bases: object

spatial_mask
Return mask for the spatial_states.

A 3D Tensor of shape (batch, width, height) of type float32 which masks the spatial states that they can be
of different shapes. The mask should only contain ones or zeros.

spatial_states
Return object states in space.

A 4D Tensor of shape (batch, width, height, state_size) which contains the states of the object in space
(e.g. final layer of a convolution network processing an image.

class neuralmonkey.model.stateful.SpatialStatefulWithOutput
Bases: neuralmonkey.model.stateful.Stateful, neuralmonkey.model.stateful.
SpatialStateful

class neuralmonkey.model.stateful.Stateful
Bases: object

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

class neuralmonkey.model.stateful.TemporalStateful
Bases: object

temporal_mask
Return mask for the temporal_states.

A 2D Tensor of shape (batch, time) of type float32 which masks the temporal states so each sequence can
have a different length. It should only contain ones or zeros.

temporal_states
Return object states in time.

A 3D Tensor of shape (batch, time, state_size) which contains the states of the object in time (e.g. hidden
states of a recurrent encoder.

class neuralmonkey.model.stateful.TemporalStatefulWithOutput
Bases: neuralmonkey.model.stateful.Stateful, neuralmonkey.model.stateful.
TemporalStateful

1.6. API Documentation 57

Neural Monkey Documentation, Release 0.1

Module contents

neuralmonkey.nn package

Submodules

neuralmonkey.nn.highway module

Module implementing the highway networks.

neuralmonkey.nn.highway.highway(inputs, activation=<function relu>,
scope=’HighwayNetwork’)

Create a single highway layer.

y = H(x, Wh) * T(x, Wt) + x * C(x, Wc)

where:

C(x, Wc) = 1 - T(x, Wt)

Parameters

• inputs – A tensor or list of tensors. It should be 2D tensors with equal length in the first
dimension (batch size)

• activation – Activation function of the linear part of the formula H(x, Wh).

• scope – The name of the scope used for the variables.

Returns A tensor of shape tf.shape(inputs)

neuralmonkey.nn.mlp module

class neuralmonkey.nn.mlp.MultilayerPerceptron(mlp_input: tensor-
flow.python.framework.ops.Tensor,
layer_configuration: typing.List[int],
dropout_keep_prob: float, out-
put_size: int, train_mode: tensor-
flow.python.framework.ops.Tensor,
activation_fn: typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor],
tensorflow.python.framework.ops.Tensor]
= <function relu>, name: str = ‘multi-
layer_perceptron’)→ None

Bases: object

General implementation of the multilayer perceptron.

classification

softmax

neuralmonkey.nn.noisy_gru_cell module

class neuralmonkey.nn.noisy_gru_cell.NoisyGRUCell(num_units: int, training)→ None
Bases: tensorflow.python.ops.rnn_cell_impl.RNNCell

58 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078).

GRU with noisy activation functions (http://arxiv.org/abs/1603.00391). The theano code is availble at https:
//github.com/caglar/noisy_units.

It is based on the TensorFlow implementatin of GRU just the activation function are changed for the noisy ones.

output_size

state_size

neuralmonkey.nn.noisy_gru_cell.noisy_activation(x, generic, linearized, training, alpha:
float = 1.1, c: float = 0.5)

Apply the noisy activation.

Implements the noisy activation with Half-Normal Noise for Hard-Saturation functions.

See http://arxiv.org/abs/1603.00391, Algorithm 1.

Parameters

• x – Tensor which is an input to the activation function

• generic – The generic formulation of the activation function. (denoted as h in the paper)

• linearized – Linearization of the activation based on the first-order Tailor expansion
around zero. (denoted as u in the paper)

• training – A boolean tensor telling whether we are in the training stage (and the noise is
sampled) or in runtime when the expactation is used instead.

• alpha – Mixing hyper-parameter. The leakage rate from the linearized function to the
nonlinear one.

• c – Standard deviation of the sampled noise.

neuralmonkey.nn.noisy_gru_cell.noisy_sigmoid(x, training)

neuralmonkey.nn.noisy_gru_cell.noisy_tanh(x, training)

neuralmonkey.nn.ortho_gru_cell module

class neuralmonkey.nn.ortho_gru_cell.NematusGRUCell(rnn_size, use_state_bias=False,
use_input_bias=True)

Bases: tensorflow.python.ops.rnn_cell_impl.GRUCell

Nematus implementation of gated recurrent unit cell.

The main difference is the order in which the gating functions and linear projections are applied to the hidden
state.

The math is equivalent, in practice there are differences due to float precision errors.

call(inputs, state)
Gated recurrent unit (GRU) with nunits cells.

class neuralmonkey.nn.ortho_gru_cell.OrthoGRUCell(num_units, activation=None,
reuse=None, bias_initializer=None)

Bases: tensorflow.python.ops.rnn_cell_impl.GRUCell

Classic GRU cell but initialized using random orthogonal matrices.

1.6. API Documentation 59

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1603.00391
https://github.com/caglar/noisy_units
https://github.com/caglar/noisy_units
http://arxiv.org/abs/1603.00391

Neural Monkey Documentation, Release 0.1

neuralmonkey.nn.pervasive_dropout_wrapper module

class neuralmonkey.nn.pervasive_dropout_wrapper.PervasiveDropoutWrapper(cell,
mask,
scale)
→
None

Bases: tensorflow.python.ops.rnn_cell_impl.RNNCell

output_size

state_size

neuralmonkey.nn.projection module

Module which implements various types of projections.

neuralmonkey.nn.projection.glu(input_: tensorflow.python.framework.ops.Tensor, gating_fn: typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor], tensor-
flow.python.framework.ops.Tensor] = <function sigmoid>) →
tensorflow.python.framework.ops.Tensor

Apply a Gated Linear Unit.

Gated Linear Unit - Dauphin et al. (2016).

http://arxiv.org/abs/1612.08083

neuralmonkey.nn.projection.maxout(inputs: tensorflow.python.framework.ops.Tensor, size:
int, scope: str = ‘MaxoutProjection’) → tensor-
flow.python.framework.ops.Tensor

Apply a maxout operation.

Implementation of Maxout layer (Goodfellow et al., 2013).

http://arxiv.org/pdf/1302.4389.pdf

z = Wx + b y_i = max(z_{2i-1}, z_{2i})

Parameters

• inputs – A tensor or list of tensors. It should be 2D tensors with equal length in the first
dimension (batch size)

• size – The size of dimension 1 of the output tensor.

• scope – The name of the scope used for the variables

Returns A tensor of shape batch x size

60 Chapter 1. Getting Started

http://arxiv.org/abs/1612.08083
http://arxiv.org/pdf/1302.4389.pdf

Neural Monkey Documentation, Release 0.1

neuralmonkey.nn.projection.multilayer_projection(input_: tensor-
flow.python.framework.ops.Tensor,
layer_sizes: typing.List[int],
train_mode: tensor-
flow.python.framework.ops.Tensor,
activation: typ-
ing.Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor] =
<function relu>, dropout_keep_prob:
float = 1.0, scope: str
= ‘mlp’) → tensor-
flow.python.framework.ops.Tensor

neuralmonkey.nn.utils module

Module which provides utility functions used across the package.

neuralmonkey.nn.utils.dropout(variable: tensorflow.python.framework.ops.Tensor, keep_prob:
float, train_mode: tensorflow.python.framework.ops.Tensor) →
tensorflow.python.framework.ops.Tensor

Perform dropout on a variable, depending on mode.

Parameters

• variable – The variable to be dropped out

• keep_prob – The probability of keeping a value in the variable

• train_mode – A bool Tensor specifying whether to dropout or not

Module contents

neuralmonkey.processors package

Submodules

neuralmonkey.processors.alignment module

class neuralmonkey.processors.alignment.WordAlignmentPreprocessor(source_len,
target_len,
dtype=<class
‘numpy.float32’>,
normal-
ize=True,
zero_based=True)

Bases: object

A preprocessor for word alignments in a text format.

One of the following formats is expected:

s1-t1 s2-t2 ...

s1:1/w1 s2:t2/w2 ...

1.6. API Documentation 61

Neural Monkey Documentation, Release 0.1

where each s and t is the index of a word in the source and target sentence, respectively, and w is the correspond-
ing weight. If the weight is not given, it is assumend to be 1. The separators - and : are interchangeable.

The output of the preprocessor is an alignment matrix of the fixed shape (target_len, source_len) for each
sentence.

neuralmonkey.processors.bpe module

class neuralmonkey.processors.bpe.BPEPostprocessor(separator: str = ‘@@’)→ None
Bases: object

decode(sentence: typing.List[str])→ typing.List[str]

class neuralmonkey.processors.bpe.BPEPreprocessor(merge_file: str, separator: str = ‘@@’,
encoding: str = ‘utf-8’)→ None

Bases: object

Wrapper class for Byte-Pair Encoding.

Paper: https://arxiv.org/abs/1508.07909 Code: https://github.com/rsennrich/subword-nmt

neuralmonkey.processors.editops module

class neuralmonkey.processors.editops.Postprocess(source_id: str, edits_id:
str, result_postprocess: typ-
ing.Callable[[typing.Iterable[typing.List[str]]],
typing.Iterable[typing.List[str]]] =
None)→ None

Bases: object

Proprocessor applying edit operations on a series.

class neuralmonkey.processors.editops.Preprocess(source_id: str, target_id: str)→ None
Bases: object

Preprocessor transorming two series into series of edit operations.

neuralmonkey.processors.editops.convert_to_edits(source: typing.List[str], target: typ-
ing.List[str])→ typing.List[str]

neuralmonkey.processors.editops.reconstruct(source: typing.List[str], edits: typ-
ing.List[str])→ typing.List[str]

neuralmonkey.processors.german module

class neuralmonkey.processors.german.GermanPostprocessor(compounding=True,
contracting=True, pro-
nouns=True)

Bases: object

decode(sentence)

class neuralmonkey.processors.german.GermanPreprocessor(compounding=True, contract-
ing=True, pronouns=True)

Bases: object

62 Chapter 1. Getting Started

https://arxiv.org/abs/1508.07909
https://github.com/rsennrich/subword-nmt

Neural Monkey Documentation, Release 0.1

neuralmonkey.processors.helpers module

neuralmonkey.processors.helpers.pipeline(processors: typing.List[typing.Callable])→ typ-
ing.Callable

Concatenate processors.

neuralmonkey.processors.helpers.postprocess_char_based(sentences: typ-
ing.List[typing.List[str]])
→ typ-
ing.List[typing.List[str]]

neuralmonkey.processors.helpers.preprocess_char_based(sentence: typing.List[str])→
typing.List[str]

neuralmonkey.processors.helpers.untruecase(sentences: typing.List[typing.List[str]]) →
typing.Generator[[typing.List[str], NoneType],
NoneType]

neuralmonkey.processors.speech module

neuralmonkey.processors.speech.SpeechFeaturesPreprocessor(feature_type: str =
‘mfcc’, delta_order:
int = 0, delta_window:
int = 2, **kwargs) →
typing.Callable

Calculate speech features.

First, the given type of features (e.g. MFCC) is computed using a window of length winlen and step winstep; for
additional keyword arguments (specific to each feature type), see http://python-speech-features.readthedocs.io/.
Then, delta features up to delta_order are added.

By default, 13 MFCCs per frame are computed. To add delta and delta-delta features (resulting in 39 coefficients
per frame), set delta_order=2.

Parameters

• feature_type – mfcc, fbank, logfbank or ssc (default is mfcc)

• delta_order – maximum order of the delta features (default is 0)

• delta_window – window size for delta features (default is 2)

• **kwargs – keyword arguments for the appropriate function from python_speech_features

Returns A numpy array of shape [num_frames, num_features].

Module contents

neuralmonkey.readers package

Submodules

neuralmonkey.readers.audio_reader module

class neuralmonkey.readers.audio_reader.Audio(rate, data)
Bases: tuple

1.6. API Documentation 63

http://python-speech-features.readthedocs.io/

Neural Monkey Documentation, Release 0.1

data
Alias for field number 1

rate
Alias for field number 0

neuralmonkey.readers.audio_reader.audio_reader(prefix: str = ‘’, audio_format: str =
‘wav’)→ typing.Callable

Get a reader of audio files loading them from a list of pahts.

Parameters prefix – Prefix of the paths to the audio files.

Returns The reader function that takes a list of audio file paths (relative to provided prefix) and
returns a list of numpy arrays.

neuralmonkey.readers.image_reader module

neuralmonkey.readers.image_reader.image_reader(prefix=’‘, pad_w: typing.Union[int,
NoneType] = None, pad_h: typ-
ing.Union[int, NoneType] = None,
rescale_w: bool = False, rescale_h:
bool = False, keep_aspect_ratio: bool
= False, mode: str = ‘RGB’) →
typing.Callable

Get a reader of images loading them from a list of pahts.

Parameters

• prefix – Prefix of the paths that are listed in a image files.

• pad_w – Width to which the images will be padded/cropped/resized.

• pad_h – Height to with the images will be padded/corpped/resized.

• rescale_w – If true, image is rescaled to have given width. It is cropped/padded other-
wise.

• rescale_h – If true, image is rescaled to have given height. It is cropped/padded other-
wise.

• keep_aspect_ratio – Flag whether the aspect ration should be kept during rescaling.
Can only be used if both width and height are rescaled.

• mode – Scipy image loading mode, see scipy documentation for more details.

Returns The reader function that takes a list of image paths (relative to provided prefix) and returns
a list of images as numpy arrays of shape pad_h x pad_w x number of channels.

neuralmonkey.readers.image_reader.imagenet_reader(prefix: str, target_width: int = 227,
target_height: int = 227) → typ-
ing.Callable

Load and prepare image the same way as Caffe scripts.

neuralmonkey.readers.numpy_reader module

neuralmonkey.readers.numpy_reader.numpy_reader(files: typing.List[str])

64 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.readers.plain_text_reader module

neuralmonkey.readers.plain_text_reader.UtfPlainTextReader(files: typ-
ing.List[str]) → typ-
ing.Iterable[typing.List[str]]

neuralmonkey.readers.plain_text_reader.column_separated_reader(column: int,
delimiter: str =
‘\t’, quotechar:
str = None,
encoding: str =
‘utf-8’) → typ-
ing.Callable[[typing.List[str]],
typ-
ing.Iterable[typing.List[str]]]

Get reader for delimiter-separated tokenized text.

Parameters column – number of column to be returned. It starts with 1 for the first

neuralmonkey.readers.plain_text_reader.csv_reader(column: int)

neuralmonkey.readers.plain_text_reader.string_reader(encoding: str = ‘utf-8’)→ typ-
ing.Callable[[typing.List[str]],
typing.Iterable[str]]

neuralmonkey.readers.plain_text_reader.tokenized_text_reader(encoding: str =
‘utf-8’) → typ-
ing.Callable[[typing.List[str]],
typ-
ing.Iterable[typing.List[str]]]

Get reader for space-separated tokenized text.

neuralmonkey.readers.plain_text_reader.tsv_reader(column: int)

neuralmonkey.readers.string_vector_reader module

neuralmonkey.readers.string_vector_reader.FloatVectorReader(files: typ-
ing.List[str])→ typ-
ing.Iterable[typing.List[numpy.ndarray]]

neuralmonkey.readers.string_vector_reader.IntVectorReader(files: typ-
ing.List[str]) → typ-
ing.Iterable[typing.List[numpy.ndarray]]

neuralmonkey.readers.string_vector_reader.get_string_vector_reader(dtype:
typ-
ing.Type
= <class
‘numpy.float32’>,
columns:
int =
None)

Get a reader for vectors encoded as whitespace-separated numbers.

1.6. API Documentation 65

Neural Monkey Documentation, Release 0.1

Module contents

neuralmonkey.runners package

Submodules

neuralmonkey.runners.base_runner module

class neuralmonkey.runners.base_runner.BaseRunner(output_series: str, decoder: neural-
monkey.model.model_part.ModelPart)
→ None

Bases: object

decoder_data_id

get_executable(compute_losses: bool = False, summaries: bool = True) → neural-
monkey.runners.base_runner.Executable

loss_names

class neuralmonkey.runners.base_runner.Executable
Bases: object

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

class neuralmonkey.runners.base_runner.ExecutionResult(outputs, losses,
scalar_summaries, his-
togram_summaries, im-
age_summaries)

Bases: tuple

histogram_summaries
Alias for field number 3

image_summaries
Alias for field number 4

losses
Alias for field number 1

outputs
Alias for field number 0

scalar_summaries
Alias for field number 2

neuralmonkey.runners.base_runner.reduce_execution_results(execution_results: typ-
ing.List[neuralmonkey.runners.base_runner.ExecutionResult])
→ neural-
monkey.runners.base_runner.ExecutionResult

Aggregate execution results into one.

66 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.runners.beamsearch_runner module

class neuralmonkey.runners.beamsearch_runner.BeamSearchExecutable(rank: int,
all_encoders:
typ-
ing.Set[neuralmonkey.model.model_part.ModelPart],
bs_outputs:
neural-
monkey.decoders.beam_search_decoder.SearchStepOutput,
vocabulary:
neural-
monkey.vocabulary.Vocabulary,
postpro-
cess: typ-
ing.Union[typing.Callable,
NoneType])→
None

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

class neuralmonkey.runners.beamsearch_runner.BeamSearchRunner(output_series:
str, decoder: neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder,
rank: int = 1,
postprocess: typ-
ing.Callable[[typing.List[str]],
typing.List[str]] =
None)→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

decoder_data_id

get_executable(compute_losses: bool = False, summaries: bool = True) → neural-
monkey.runners.beamsearch_runner.BeamSearchExecutable

loss_names

neuralmonkey.runners.beamsearch_runner.beam_search_runner_range(output_series:
str, decoder:
neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder,
max_rank: int
= None, post-
process: typ-
ing.Callable[[typing.List[str]],
typ-
ing.List[str]]
= None)
→ typ-
ing.List[neuralmonkey.runners.beamsearch_runner.BeamSearchRunner]

Return beam search runners for a range of ranks from 1 to max_rank.

This means there is max_rank output series where the n-th series contains the n-th best hypothesis from the
beam search.

1.6. API Documentation 67

Neural Monkey Documentation, Release 0.1

Parameters

• output_series – Prefix of output series.

• decoder – Beam search decoder shared by all runners.

• max_rank – Maximum rank of the hypotheses.

• postprocess – Series-level postprocess applied on output.

Returns List of beam search runners getting hypotheses with rank from 1 to max_rank.

neuralmonkey.runners.label_runner module

class neuralmonkey.runners.label_runner.LabelRunExecutable(all_coders, fetches, vo-
cabulary, postprocess)

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.label_runner.LabelRunner(output_series: str, decoder:
typing.Any, postprocess: typ-
ing.Callable[[typing.List[str]],
typing.List[str]] = None)→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

get_executable(compute_losses=False, summaries=True)

loss_names

neuralmonkey.runners.logits_runner module

A runner outputing logits or normalized distriution from a decoder.

class neuralmonkey.runners.logits_runner.LogitsExecutable(all_coders: typ-
ing.Set[neuralmonkey.model.model_part.ModelPart],
fetches: typ-
ing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float,
numpy.ndarray]], vo-
cabulary: neural-
monkey.vocabulary.Vocabulary,
normalize: bool = True,
pick_index: int = None)
→ None

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

Get the feedables and tensors to run.

68 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

class neuralmonkey.runners.logits_runner.LogitsRunner(output_series: str, decoder: typ-
ing.Any, normalize: bool =
True, pick_index: int = None,
pick_value: str = None)→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

A runner which takes the output from decoder.decoded_logits.

The logits / normalized probabilities are outputted as tab-separates string values. If the decoder produces a list
of logits (as the recurrent decoder), the tab separated arrays are separated with commas. Alternatively, we may
be interested in a single distribution dimension.

get_executable(compute_losses: bool = False, summaries: bool = True) → neural-
monkey.runners.logits_runner.LogitsExecutable

loss_names

neuralmonkey.runners.perplexity_runner module

class neuralmonkey.runners.perplexity_runner.PerplexityExecutable(all_coders:
typ-
ing.Set[neuralmonkey.model.model_part.ModelPart],
xent_op:
tensor-
flow.python.framework.ops.Tensor)
→ None

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.perplexity_runner.PerplexityRunner(output_series:
str, decoder: neural-
monkey.decoders.decoder.Decoder)
→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

get_executable(compute_losses=False, summaries=True) → neural-
monkey.runners.perplexity_runner.PerplexityExecutable

loss_names

neuralmonkey.runners.plain_runner module

class neuralmonkey.runners.plain_runner.PlainExecutable(all_coders, fetches, vocabu-
lary, postprocess)→ None

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

Get the feedables and tensors to run.

1.6. API Documentation 69

Neural Monkey Documentation, Release 0.1

class neuralmonkey.runners.plain_runner.PlainRunner(output_series: str, decoder:
typing.Any, postprocess: typ-
ing.Callable[[typing.List[str]],
typing.List[str]] = None)→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

A runner which takes the output from decoder.decoded.

get_executable(compute_losses=False, summaries=True)

loss_names

neuralmonkey.runners.regression_runner module

class neuralmonkey.runners.regression_runner.RegressionRunExecutable(all_coders:
typ-
ing.Set[neuralmonkey.model.model_part.ModelPart],
fetches:
typ-
ing.Dict[str,
tensor-
flow.python.framework.ops.Tensor],
postpro-
cess: typ-
ing.Callable[[float],
float] =
None) →
None

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.regression_runner.RegressionRunner(output_series:
str, decoder: neural-
monkey.decoders.sequence_regressor.SequenceRegressor,
postprocess: typ-
ing.Callable[[float],
float] = None) →
None

Bases: neuralmonkey.runners.base_runner.BaseRunner

get_executable(compute_losses: bool = False, summaries: bool = True) → neural-
monkey.runners.base_runner.Executable

loss_names

neuralmonkey.runners.representation_runner module

A runner that prints out the input representation from an encoder.

70 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

class neuralmonkey.runners.representation_runner.RepresentationExecutable(prev_coders:
typ-
ing.Set[neuralmonkey.model.model_part.ModelPart],
en-
coded:
ten-
sor-
flow.python.framework.ops.Tensor,
used_session:
int)
→
None

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

class neuralmonkey.runners.representation_runner.RepresentationRunner(output_series:
str, en-
coder:
neural-
monkey.model.stateful.Stateful,
used_session:
int = 0)
→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

Runner printing out representation from a encoder.

Using this runner is the way how to get input / other data representation out from Neural Monkey.

get_executable(compute_losses: bool = False, summaries: bool = True) → neural-
monkey.runners.representation_runner.RepresentationExecutable

loss_names

neuralmonkey.runners.runner module

class neuralmonkey.runners.runner.GreedyRunExecutable(all_coders, fetches, vocabulary,
postprocess)→ None

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.runner.GreedyRunner(output_series: str, decoder:
typing.Any, postprocess: typ-
ing.Callable[[typing.List[str]], typ-
ing.List[str]] = None)→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

get_executable(compute_losses=False, summaries=True)

loss_names

1.6. API Documentation 71

Neural Monkey Documentation, Release 0.1

neuralmonkey.runners.word_alignment_runner module

class neuralmonkey.runners.word_alignment_runner.WordAlignmentRunner(output_series:
str, en-
coder:
neural-
monkey.model.model_part.ModelPart,
decoder:
neural-
monkey.decoders.decoder.Decoder)
→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

get_executable(compute_losses=False, summaries=True)

loss_names

class neuralmonkey.runners.word_alignment_runner.WordAlignmentRunnerExecutable(all_coders,
fetches)

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

Get the feedables and tensors to run.

Module contents

neuralmonkey.tests package

Submodules

neuralmonkey.tests.test_bleu module

class neuralmonkey.tests.test_bleu.TestBLEU(methodName=’runTest’)
Bases: unittest.case.TestCase

test_bleu()

test_empty_decoded()

test_empty_reference()

test_empty_sentence()

test_identical()

neuralmonkey.tests.test_config module

Tests the config parsing module.

class neuralmonkey.tests.test_config.TestParsing(methodName=’runTest’)
Bases: unittest.case.TestCase

test_splitter_bad_brackets()

72 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.tests.test_config.test_splitter_gen(a, b)

neuralmonkey.tests.test_dataset module

class neuralmonkey.tests.test_dataset.TestDataset(methodName=’runTest’)
Bases: unittest.case.TestCase

test_nonexistent_file()

neuralmonkey.tests.test_decoder module

Unit tests for the decoder. (Tests only initialization so far)

class neuralmonkey.tests.test_decoder.TestDecoder(methodName=’runTest’)
Bases: unittest.case.TestCase

test_init()

neuralmonkey.tests.test_encoders_init module

Test init methods of encoders.

class neuralmonkey.tests.test_encoders_init.TestEncodersInit(methodName=’runTest’)
Bases: unittest.case.TestCase

test_post_cnn_encoder()

test_sentence_cnn_encoder()

test_sentence_encoder()

test_vector_encoder()

neuralmonkey.tests.test_encoders_init.traverse_combinations(params: typ-
ing.Dict[str, typ-
ing.List[typing.Any]],
partial_params:
typing.Dict[str,
typing.Any]) → typ-
ing.Iterable[typing.Dict[str,
typing.Any]]

neuralmonkey.tests.test_eval_wrappers module

class neuralmonkey.tests.test_eval_wrappers.TestAccuracyEvaluator(methodName=’runTest’)
Bases: unittest.case.TestCase

setUp()

test_seq_level_acc()

test_word_level_acc()

class neuralmonkey.tests.test_eval_wrappers.TestExternalEvaluators(methodName=’runTest’)
Bases: unittest.case.TestCase

test_beer()

1.6. API Documentation 73

Neural Monkey Documentation, Release 0.1

test_f1()

test_gleu()

test_multeval_bleu()

test_multeval_meteor()

test_multeval_ter()

neuralmonkey.tests.test_functions module

Unit tests for functions.py.

class neuralmonkey.tests.test_functions.TestPiecewiseFunction(methodName=’runTest’)
Bases: unittest.case.TestCase

test_piecewise_constant()

neuralmonkey.tests.test_model_part module

Test ModelPart class.

class neuralmonkey.tests.test_model_part.Test(methodName=’runTest’)
Bases: unittest.case.TestCase

Test capabilities of model part.

test_save_and_load()
Try to save and load encoder.

neuralmonkey.tests.test_nn_utils module

class neuralmonkey.tests.test_nn_utils.TestDropout(methodName=’runTest’)
Bases: unittest.case.TestCase

test_invalid_keep_prob()
Tests invalid dropout values

test_keep_prob()
Counts dropped items and compare with the expectation

test_train_false()
Checks that dropout is not used when not training

neuralmonkey.tests.test_readers module

Unit tests for readers

class neuralmonkey.tests.test_readers.TestStringVectorReader(methodName=’runTest’)
Bases: unittest.case.TestCase

setUp()

tearDown()

test_columns()

test_reader()

74 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.tests.test_ter module

class neuralmonkey.tests.test_ter.TestBLEU(methodName=’runTest’)
Bases: unittest.case.TestCase

test_empty_decoded()

test_empty_reference()

test_empty_sentence()

test_identical()

test_ter()

neuralmonkey.tests.test_vocabulary module

class neuralmonkey.tests.test_vocabulary.TestVocabulary(methodName=’runTest’)
Bases: unittest.case.TestCase

test_all_words_in()

test_count_fail()

test_min_freq()

test_padding()

test_there_and_back_self()

test_unknown_word()

test_weights()

1.6. API Documentation 75

Neural Monkey Documentation, Release 0.1

Module contents

neuralmonkey.trainers package

Submodules

neuralmonkey.trainers.cross_entropy_trainer module

class neuralmonkey.trainers.cross_entropy_trainer.CrossEntropyTrainer(decoders:
typ-
ing.List[typing.Any],
de-
coder_weights:
typ-
ing.List[typing.Union[tensorflow.python.framework.ops.Tensor,
float,
None-
Type]]
= None,
l1_weight=0.0,
l2_weight=0.0,
clip_norm=False,
opti-
mizer=None,
global_step=None,
var_scopes:
typ-
ing.List[str]
= None,
var_collection:
str =
None)
→ None

Bases: neuralmonkey.trainers.generic_trainer.GenericTrainer

neuralmonkey.trainers.cross_entropy_trainer.xent_objective(decoder,
weight=None)
→ neural-
monkey.trainers.generic_trainer.Objective

Get XENT objective from decoder with cost.

76 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.trainers.generic_trainer module

class neuralmonkey.trainers.generic_trainer.GenericTrainer(objectives: typ-
ing.List[neuralmonkey.trainers.generic_trainer.Objective],
l1_weight: float = 0.0,
l2_weight: float = 0.0,
clip_norm: float =
None, optimizer=None,
global_step=None,
var_scopes: typ-
ing.List[str] = None,
var_collection: str =
None)→ None

Bases: object

get_executable(compute_losses=True, summaries=True) → neural-
monkey.runners.base_runner.Executable

class neuralmonkey.trainers.generic_trainer.Objective(name, decoder, loss, gradients,
weight)

Bases: tuple

decoder
Alias for field number 1

gradients
Alias for field number 3

loss
Alias for field number 2

name
Alias for field number 0

weight
Alias for field number 4

class neuralmonkey.trainers.generic_trainer.TrainExecutable(all_coders,
train_op, losses,
scalar_summaries,
histogram_summaries)

Bases: neuralmonkey.runners.base_runner.Executable

collect_results(results: typing.List[typing.Dict])→ None

next_to_execute() → typing.Tuple[typing.Set[neuralmonkey.model.model_part.ModelPart], typ-
ing.Union[typing.Dict, typing.List], typing.Dict[tensorflow.python.framework.ops.Tensor,
typing.Union[int, float, numpy.ndarray]]]

neuralmonkey.trainers.self_critical_objective module

Training objective for self-critical learning.

Self-critic learning is a modification of the REINFORCE algorithm that uses the reward of the train-time decoder
output as a baseline in the update step.

For more details see: https://arxiv.org/pdf/1612.00563.pdf

1.6. API Documentation 77

https://arxiv.org/pdf/1612.00563.pdf

Neural Monkey Documentation, Release 0.1

neuralmonkey.trainers.self_critical_objective.reinforce_score(reward: tensor-
flow.python.framework.ops.Tensor,
baseline: tensor-
flow.python.framework.ops.Tensor,
decoded: tensor-
flow.python.framework.ops.Tensor,
logits: tensor-
flow.python.framework.ops.Tensor)
→ tensor-
flow.python.framework.ops.Tensor

Cost function whose derivative is the REINFORCE equation.

This implements the primitive function to the central equation of the REINFORCE algorithm that estimates the
gradients of the loss with respect to decoder logits.

It uses the fact that the second term of the product (the difference of the word distribution and one hot vector of
the decoded word) is a derivative of negative log likelihood of the decoded word. The reward function and the
baseline are however treated as a constant, so they influence the derivate only multiplicatively.

neuralmonkey.trainers.self_critical_objective.self_critical_objective(decoder:
neu-
ral-
monkey.decoders.decoder.Decoder,
re-
ward_function:
typ-
ing.Callable[[numpy.ndarray,
numpy.ndarray],
numpy.ndarray],
weight:
float
=
None)
→
neu-
ral-
monkey.trainers.generic_trainer.Objective

Self-critical objective.

Parameters

• decoder – A recurrent decoder.

• reward_function – A reward function computing score in Python.

• weight – Mixing weight for a trainer.

Returns Objective object to be used in generic trainer.

neuralmonkey.trainers.self_critical_objective.sentence_bleu(references:
numpy.ndarray,
hypotheses:
numpy.ndarray)
→ numpy.ndarray

Compute index-based sentence-level BLEU score.

Computes sentence level BLEU on indices outputed by the decoder, i.e. whatever the decoder uses as a unit is
used a token in the BLEU computation, ignoring the tokens may be sub-word units.

78 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.trainers.self_critical_objective.sentence_gleu(references:
numpy.ndarray,
hypotheses:
numpy.ndarray)
→ numpy.ndarray

Compute index-based GLEU score.

GLEU score is a sentence-level metric used in Google’s Neural MT as a reward in reinforcement learning
(https://arxiv.org/abs/1609.08144). It is a minimum of precision and recall on 1- to 4-grams.

It operates over the indices emitted by the decoder which are not necessarily tokens (could be characters or
subword units).

Module contents

Submodules

neuralmonkey.checking module

API checking module.

This module serves as a library of API checks used as assertions during constructing the computational graph.

exception neuralmonkey.checking.CheckingException
Bases: Exception

neuralmonkey.checking.assert_same_shape(tensor_a: tensor-
flow.python.framework.ops.Tensor, tensor_b:
tensorflow.python.framework.ops.Tensor)→ None

Check if two tensors have the same shape.

neuralmonkey.checking.assert_shape(tensor: tensorflow.python.framework.ops.Tensor, ex-
pected_shape: typing.List[typing.Union[int, NoneType]])
→ None

Check shape of a tensor.

Parameters

• tensor – Tensor to be chcecked.

• expected_shape – Expected shape where None means the same as in TF and -1 means
not checking the dimension.

neuralmonkey.checking.check_dataset_and_coders(dataset: neural-
monkey.dataset.Dataset, runners: typ-
ing.Iterable[neuralmonkey.runners.base_runner.BaseRunner])
→ None

neuralmonkey.dataset module

Implementation of the dataset class.

class neuralmonkey.dataset.Dataset(name: str, series: typing.Dict[str, typing.List], series_outputs:
typing.Dict[str, str])→ None

Bases: collections.abc.Sized

Base Dataset class.

1.6. API Documentation 79

https://arxiv.org/abs/1609.08144

Neural Monkey Documentation, Release 0.1

This class serves as collection for data series for particular encoders and decoders in the model. If it is not
provided a parent dataset, it also manages the vocabularies inferred from the data.

A data series is either a list of strings or a numpy array.

add_series(name: str, series: typing.List[typing.Any])→ None

batch_dataset(batch_size: int)→ typing.Iterable[typing.Dataset]
Split the dataset into a list of batched datasets.

Parameters batch_size – The size of a batch.

Returns Generator yielding batched datasets.

batch_serie(serie_name: str, batch_size: int)→ typing.Iterable[typing.Iterable]
Split a data serie into batches.

Parameters

• serie_name – The name of the series

• batch_size – The size of a batch

Returns Generator yielding batches of the data from the serie.

get_series(name: str, allow_none: bool = False)→ typing.Iterable
Get the data series with a given name.

Parameters

• name – The name of the series to fetch.

• allow_none – If True, return None if the series does not exist.

Returns The data series.

Raises KeyError if the series does not exists and allow_none is False

has_series(name: str)→ bool
Check if the dataset contains a series of a given name.

Parameters name – Series name

Returns True if the dataset contains the series, False otherwise.

series_ids

shuffle()→ None
Shuffle the dataset randomly.

subset(start: int, length: int)→ neuralmonkey.dataset.Dataset

class neuralmonkey.dataset.LazyDataset(name: str, series_paths_and_readers: typ-
ing.Dict[str, typing.Tuple[typing.List[str], typ-
ing.Callable[[typing.List[str]], typing.Any]]], se-
ries_outputs: typing.Dict[str, str], preprocessors:
typing.List[typing.Tuple[str, str, typing.Callable]] =
None)→ None

Bases: neuralmonkey.dataset.Dataset

Implements the lazy dataset.

The main difference between this implementation and the default one is that the contents of the file are not fully
loaded to the memory. Instead, everytime the function get_series is called, a new file handle is created and
a generator which yields lines from the file is returned.

add_series(name: str, series: typing.Iterable[typing.Any])→ None

80 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

get_series(name: str, allow_none: bool = False)→ typing.Iterable
Get the data series with a given name.

This function opens a new file handle and returns a generator which yields preprocessed lines from the file.

Parameters

• name – The name of the series to fetch.

• allow_none – If True, return None if the series does not exist.

Returns The data series.

Raises KeyError if the series does not exists and allow_none is False

has_series(name: str)→ bool
Check if the dataset contains a series of a given name.

Parameters name – Series name

Returns True if the dataset contains the series, False otherwise.

series_ids

shuffle()→ None
Do nothing, not in-memory shuffle is impossible.

TODO: this is related to the __len__ method.

subset(start: int, length: int)→ neuralmonkey.dataset.Dataset

neuralmonkey.dataset.load_dataset_from_files(name: str = None, lazy: bool = False,
preprocessors: typing.List[typing.Tuple[str,
str, typing.Callable]] = None, **kwargs)
→ neuralmonkey.dataset.Dataset

Load a dataset from the files specified by the provided arguments.

Paths to the data are provided in a form of dictionary.

Keyword Arguments

• name – The name of the dataset to use. If None (default), the name will be inferred from
the file names.

• lazy – Boolean flag specifying whether to use lazy loading (useful for large files). Note
that the lazy dataset cannot be shuffled. Defaults to False.

• preprocessor – A callable used for preprocessing of the input sentences.

• kwargs – Dataset keyword argument specs. These parameters should begin with ‘s_‘ prefix
and may end with ‘_out’ suffix. For example, a data series ‘source’ which specify the source
sentences should be initialized with the ‘s_source’ parameter, which specifies the path and
optinally reader of the source file. If runners generate data of the ‘target’ series, the output
file should be initialized with the ‘s_target_out’ parameter. Series identifiers should not
contain underscores. Dataset-level preprocessors are defined with ‘pre_‘ prefix followed
by a new series name. In case of the pre-processed series, a callable taking the dataset and
returning a new series is expected as a value.

Returns The newly created dataset.

Raises Exception when no input files are provided.

1.6. API Documentation 81

Neural Monkey Documentation, Release 0.1

neuralmonkey.decorators module

neuralmonkey.decorators.tensor(func)

neuralmonkey.functions module

neuralmonkey.functions.inverse_sigmoid_decay(param, rate, min_value: float =
0.0, max_value: float = 1.0, name:
typing.Union[str, NoneType] =
None, dtype=tf.float32) → tensor-
flow.python.framework.ops.Tensor

Compute an inverse sigmoid decay: k/(k+exp(x/k)).

The result will be scaled to the range (min_value, max_value).

Parameters

• param – The parameter x from the formula.

• rate – Non-negative k from the formula.

neuralmonkey.functions.piecewise_function(param, values, changepoints, name=None,
dtype=tf.float32)

Compute a piecewise function.

Parameters

• param – The function parameter.

• values – List of function values (numbers or tensors).

• changepoints – Sorted list of points where the function changes from one value to the
next. Must be one item shorter than values.

neuralmonkey.learning_utils module

neuralmonkey.learning_utils.evaluation(evaluators, dataset, runners, execution_results, re-
sult_data)

Evaluate the model outputs.

Parameters

• evaluators – List of tuples of series and evaluation functions.

• dataset – Dataset against which the evaluation is done.

• runners – List of runners (contains series ids and loss names).

• execution_results – Execution results that include the loss values.

• result_data – Dictionary from series names to list of outputs.

Returns Dictionary of evaluation names and their values which includes the metrics applied on
respective series loss and loss values from the run.

neuralmonkey.learning_utils.print_final_evaluation(name: str, eval_result: typ-
ing.Dict[str, float])→ None

Print final evaluation from a test dataset.

82 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.learning_utils.run_on_dataset(tf_manager: neural-
monkey.tf_manager.TensorFlowManager,
runners: typ-
ing.List[neuralmonkey.runners.base_runner.BaseRunner],
dataset: neuralmonkey.dataset.Dataset,
postprocess: typ-
ing.Union[typing.List[typing.Tuple[str, typ-
ing.Callable]], NoneType], write_out: bool
= False, batch_size: typing.Union[int, None-
Type] = None, log_progress: int = 0) → typ-
ing.Tuple[typing.List[neuralmonkey.runners.base_runner.ExecutionResult],
typing.Dict[str, typing.List[typing.Any]]]

Apply the model on a dataset and optionally write outputs to files.

Parameters

• tf_manager – TensorFlow manager with initialized sessions.

• runners – A function that runs the code

• dataset – The dataset on which the model will be executed.

• evaluators – List of evaluators that are used for the model evaluation if the target data
are provided.

• postprocess – an object to use as postprocessing of the

• write_out – Flag whether the outputs should be printed to a file defined in the dataset
object.

• batch_size – size of the minibatch

• log_progress – log progress every X seconds

• extra_fetches – Extra tensors to evaluate for each batch.

Returns Tuple of resulting sentences/numpy arrays, and evaluation results if they are available
which are dictionary function -> value.

1.6. API Documentation 83

Neural Monkey Documentation, Release 0.1

neuralmonkey.learning_utils.training_loop(tf_manager: neural-
monkey.tf_manager.TensorFlowManager,
epochs: int, trainer: neural-
monkey.trainers.generic_trainer.GenericTrainer,
batch_size: int, log_directory: str, evaluators:
typing.List[typing.Union[typing.Tuple[str,
typing.Any], typing.Tuple[str, str,
typing.Any]]], runners: typ-
ing.List[neuralmonkey.runners.base_runner.BaseRunner],
train_dataset: neural-
monkey.dataset.Dataset, val_dataset: typ-
ing.Union[neuralmonkey.dataset.Dataset,
typing.List[neuralmonkey.dataset.Dataset]],
test_datasets: typ-
ing.Union[typing.List[neuralmonkey.dataset.Dataset],
NoneType] = None, logging_period:
typing.Union[str, int] = 20, valida-
tion_period: typing.Union[str, int] =
500, val_preview_input_series: typ-
ing.Union[typing.List[str], NoneType] =
None, val_preview_output_series: typ-
ing.Union[typing.List[str], NoneType] =
None, val_preview_num_examples: int
= 15, train_start_offset: int = 0, run-
ners_batch_size: typing.Union[int, NoneType]
= None, initial_variables: typing.Union[str,
typing.List[str], NoneType] = None, postpro-
cess: typing.Union[typing.List[typing.Tuple[str,
typing.Callable]], NoneType] = None)→ None

Execute the training loop for given graph and data.

Parameters

• tf_manager – TensorFlowManager with initialized sessions.

• epochs – Number of epochs for which the algoritm will learn.

• trainer – The trainer object containg the TensorFlow code for computing the loss and
optimization operation.

• batch_size – number of examples in one mini-batch

• log_directory – Directory where the TensordBoard log will be generated. If None,
nothing will be done.

• evaluators – List of evaluators. The last evaluator is used as the main. An evaluator is
a tuple of the name of the generated series, the name of the dataset series the generated one
is evaluated with and the evaluation function. If only one series names is provided, it means
the generated and dataset series have the same name.

• runners – List of runners for logging and evaluation runs

• train_dataset – Dataset used for training

• val_dataset – used for validation. Can be Dataset or a list of datasets. The last dataset
is used as the main one for storing best results. When using multiple datasets. It is recom-
mended to name them for better Tensorboard visualization.

• test_datasets – List of datasets used for testing

84 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• logging_period – after how many batches should the logging happen. It can also be
defined as a time period in format like: 3s; 4m; 6h; 1d; 3m15s; 3seconds; 4minutes; 6hours;
1days

• validation_period – after how many batches should the validation happen. It can
also be defined as a time period in same format as logging

• val_preview_input_series – which input series to preview in validation

• val_preview_output_series – which output series to preview in validation

• val_preview_num_examples – how many examples should be printed during valida-
tion

• train_start_offset – how many lines from the training dataset should be skipped.
The training starts from the next batch.

• runners_batch_size – batch size of runners. It is the same as batch_size if not speci-
fied

• initial_variables – variables used for initialization, for example for continuation of
training

• postprocess – A function which takes the dataset with its output series and generates
additional series from them.

neuralmonkey.logging module

class neuralmonkey.logging.Logging
Bases: object

static debug(message: str, label: typing.Union[str, NoneType] = None)

debug_disabled = [’‘]

debug_enabled = [’none’]

static log(message: str, color: str = ‘yellow’)→ None
Log a message with a colored timestamp.

log_file = None

static log_print(text: str)→ None
Print a string both to console and a log file is it is defined.

static notice(message: str)→ None
Log a notice with a colored timestamp.

static print_header(title: str, path: str)→ None
Print the title of the experiment and a set of arguments it uses.

static set_log_file(path: str)→ None
Set up the file where the logging will be done.

strict_mode = None

static warn(message: str)→ None
Log a warning.

neuralmonkey.logging.debug(message: str, label: typing.Union[str, NoneType] = None)

neuralmonkey.logging.log(message: str, color: str = ‘yellow’)→ None
Log a message with a colored timestamp.

1.6. API Documentation 85

Neural Monkey Documentation, Release 0.1

neuralmonkey.logging.log_print(text: str)→ None
Print a string both to console and a log file is it is defined.

neuralmonkey.logging.notice(message: str)→ None
Log a notice with a colored timestamp.

neuralmonkey.logging.warn(message: str)→ None
Log a warning.

neuralmonkey.run module

neuralmonkey.run.default_variable_file(output_dir)

neuralmonkey.run.initialize_for_running(output_dir, tf_manager, variable_files)→ None
Restore either default variables of from configuration.

Parameters

• output_dir – Training output directory.

• tf_manager – TensorFlow manager.

• variable_files – Files with variables to be restored or None if the default variables
should be used.

neuralmonkey.run.main()→ None

neuralmonkey.tf_manager module

TensorFlow Manager.

TensorFlow manager is a helper object in Neural Monkey which manages TensorFlow sessions, execution of the
computation graph, and saving and restoring of model variables.

class neuralmonkey.tf_manager.TensorFlowManager(num_sessions: int, num_threads: int,
save_n_best: int = 1, minimize_metric:
bool = False, variable_files: typ-
ing.Union[typing.List[str], NoneType]
= None, gpu_allow_growth: bool = True,
per_process_gpu_memory_fraction: float
= 1.0, report_gpu_memory_consumption:
bool = False, enable_tf_debug: bool =
False)→ None

Bases: object

Inteface between computational graph, data and TF sessions.

sessions
List of active Tensorflow sessions.

execute(dataset: neuralmonkey.dataset.Dataset, execution_scripts, train=False, com-
pute_losses=True, summaries=True, batch_size=None, log_progress: int = 0) → typ-
ing.List[neuralmonkey.runners.base_runner.ExecutionResult]

init_saving(vars_prefix: str)→ None

initialize_model_parts(runners, save=False)→ None
Initialize model parts variables from their checkpoints.

restore(variable_files: typing.Union[str, typing.List[str]])→ None

86 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

restore_best_vars()→ None

save(variable_files: typing.Union[str, typing.List[str]])→ None

validation_hook(score: float, epoch: int, batch: int)→ None

neuralmonkey.tf_utils module

Small helper functions for TensorFlow.

neuralmonkey.tf_utils.gpu_memusage()→ str
Return ‘’ or a string showing current GPU memory usage.

nvidia-smi result parsing based on https://github.com/wookayin/gpustat

neuralmonkey.tf_utils.has_gpu()→ bool
Check if TensorFlow can access GPU.

The test is based on https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/platform/test.py

...but we are interested only in CUDA GPU devices.

Returns True, if TF can access the GPU

neuralmonkey.train module

Training script for sequence to sequence learning.

neuralmonkey.train.create_config()→ neuralmonkey.config.configuration.Configuration

neuralmonkey.train.main()→ None

neuralmonkey.vocabulary module

Vocabulary class module.

This module implements the Vocabulary class and the helper functions that can be used to obtain a Vocabulary instance.

class neuralmonkey.vocabulary.Vocabulary(tokenized_text: typing.List[str] = None,
unk_sample_prob: float = 0.0)→ None

Bases: collections.abc.Sized

add_tokenized_text(tokenized_text: typing.List[str])→ None
Add words from a list to the vocabulary.

Parameters tokenized_text – The list of words to add.

add_word(word: str, occurences: int = 1)→ None
Add a word to the vocablulary.

Parameters

• word – The word to add. If it’s already there, increment the count.

• occurences – increment the count of word by the number of occurences

get_unk_sampled_word_index(word)
Return index of the specified word with sampling of unknown words.

1.6. API Documentation 87

https://github.com/wookayin/gpustat
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/platform/test.py

Neural Monkey Documentation, Release 0.1

This method returns the index of the specified word in the vocabulary. If the frequency of the word
in the vocabulary is 1 (the word was only seen once in the whole training dataset), with probability of
self.unk_sample_prob, generate the index of the unknown token instead.

Parameters word – The word to look up.

Returns Index of the word, index of the unknown token if sampled, or index of the unknown
token if the word is not present in the vocabulary.

get_word_index(word: str)→ int
Return index of the specified word.

Parameters word – The word to look up.

Returns Index of the word or index of the unknown token if the word is not present in the
vocabulary.

log_sample(size: int = 5)
Log a sample of the vocabulary.

Parameters size – How many sample words to log.

save_wordlist(path: str, overwrite: bool = False, save_frequencies: bool = False, encoding: str =
‘utf-8’)→ None

Save the vocabulary as a wordlist.

The file is ordered by the ids of words. This function is used mainly for embedding visualization.

Parameters

• path – The path to save the file to.

• overwrite – Flag whether to overwrite existing file. Defaults to False.

• save_frequencies – flag if frequencies should be stored. This parameter adds header
into the output file.

Raises

• FileExistsError if the file exists and overwrite flag is

• disabled.

sentences_to_tensor(sentences: typing.List[typing.List[str]], max_len: int = None,
pad_to_max_len: bool = True, train_mode: bool = False,
add_start_symbol: bool = False, add_end_symbol: bool = False) →
typing.Tuple[numpy.ndarray, numpy.ndarray]

Generate the tensor representation for the provided sentences.

Parameters

• sentences – List of sentences as lists of tokens.

• max_len – If specified, all sentences will be truncated to this length.

• pad_to_max_len – If True, the tensor will be padded to max_len, even if all of the
sentences are shorter. If False, the shape of the tensor will be determined by the maximum
length of the sentences in the batch.

• train_mode – Flag whether we are training or not (enables/disables unk sampling).

• add_start_symbol – If True, the <s> token will be added to the beginning of each
sentence vector. Enabling this option extends the maximum length by one.

88 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• add_end_symbol – If True, the </s> token will be added to the end of each sentence
vector, provided that the sentence is shorter than max_len. If not, the end token is not
added. Unlike add_start_symbol, enabling this option does not alter the maximum length.

Returns

A tuple of a sentence tensor and a padding weight vector.

The shape of the tensor representing the sentences is either (batch_max_len, batch_size) or
(batch_max_len+1, batch_size), depending on the value of the add_start_symbol argument.
batch_max_len is the length of the longest sentence in the batch (including the optional </s>
token), limited by max_len (if specified).

The shape of the padding vector is the same as of the sentence vector.

truncate(size: int)→ None
Truncate the vocabulary to the requested size.

The infrequent tokens are discarded.

Parameters size – The final size of the vocabulary

truncate_by_min_freq(min_freq: int)→ None
Truncate the vocabulary only keeping words with a minimum frequency.

Parameters min_freq – The minimum frequency of included words.

vectors_to_sentences(vectors: typing.List[numpy.ndarray])→ typing.List[typing.List[str]]
Convert vectors of indexes of vocabulary items to lists of words.

Parameters vectors – List of vectors of vocabulary indices.

Returns List of lists of words.

neuralmonkey.vocabulary.from_bpe(path: str, encoding: str = ‘utf-8’) → neural-
monkey.vocabulary.Vocabulary

Load a vocabulary from Byte-pair encoding merge list.

NOTE: The frequencies of words in this vocabulary are not computed from data. Instead, they correspond to the
number of times the subword units occurred in the BPE merge list. This means that smaller words will tend to
have larger frequencies assigned and therefore the truncation of the vocabulary can be somehow performed (but
not without a great deal of thought).

Parameters

• path – File name to load the vocabulary from.

• encoding – The encoding of the merge file (defaults to UTF-8)

neuralmonkey.vocabulary.from_dataset(datasets: typing.List[neuralmonkey.dataset.Dataset],
series_ids: typing.List[str], max_size: int, save_file:
str = None, overwrite: bool = False, min_freq: typ-
ing.Union[int, NoneType] = None, unk_sample_prob:
float = 0.5)→ neuralmonkey.vocabulary.Vocabulary

Load a vocabulary from a dataset with an option to save it.

Parameters

• datasets – A list of datasets from which to create the vocabulary

• series_ids – A list of ids of series of the datasets that should be used producing the
vocabulary

• max_size – The maximum size of the vocabulary

1.6. API Documentation 89

Neural Monkey Documentation, Release 0.1

• save_file – A file to save the vocabulary to. If None (default), the vocabulary will not
be saved.

• overwrite – Overwrite existing file.

• min_freq – Do not include words with frequency smaller than this.

• unk_sample_prob – The probability with which to sample unks out of words with fre-
quency 1. Defaults to 0.5.

Returns The new Vocabulary instance.

neuralmonkey.vocabulary.from_file(*args, **kwargs)→ neuralmonkey.vocabulary.Vocabulary

neuralmonkey.vocabulary.from_nematus_json(path: str, max_size: int = None,
pad_to_max_size: bool = False) → neu-
ralmonkey.vocabulary.Vocabulary

Load vocabulary from Nematus JSON format.

The JSON format is a flat dictionary that maps words to their index in the vocabulary.

Parameters

• path – Path to the file.

• max_size – Maximum vocabulary size including ‘unk’ and ‘eos’ symbols, but not includ-
ing <pad> and <s> symbol.

neuralmonkey.vocabulary.from_wordlist(path: str, encoding: str = ‘utf-8’, contains_header:
bool = True, contains_frequencies: bool = True) →
neuralmonkey.vocabulary.Vocabulary

Load a vocabulary from a wordlist.

The file can contain either list of words with no header. Or it can contain words and their counts separated by
tab and a header on the first line.

Parameters

• path – The path to the wordlist file

• encoding – The encoding of the merge file (defaults to UTF-8)

• contains_header – if the file have a header on first line

• contains_frequencies – if the file contains frequencies in second column

Returns The new Vocabulary instance.

neuralmonkey.vocabulary.initialize_vocabulary(directory: str, name: str, datasets: typ-
ing.List[neuralmonkey.dataset.Dataset] =
None, series_ids: typing.List[str] = None,
max_size: int = None) → neural-
monkey.vocabulary.Vocabulary

Initialize a vocabulary.

This function is supposed to initialize vocabulary when called from the configuration file. It first checks whether
the vocabulary is already loaded on the provided path and if not, it tries to generate it from the provided dataset.

Parameters

• directory – Directory where the vocabulary should be stored.

• name – Name of the vocabulary which is also the name of the file it is stored it.

• datasets – A a list of datasets from which the vocabulary can be created.

90 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• series_ids – A list of ids of series of the datasets that should be used for producing the
vocabulary.

• max_size – The maximum size of the vocabulary

Returns The new vocabulary

Module contents

The neuralmonkey package is the root package of this project.

1.7 Visualization

1.7.1 LogBook

Neural Monkey LogBook is a simple web application for preview the outputs of the experiments in the browser.

The experiment data are stored in a directory structure, where each experiment directory contains the experiment
configuration, state of the git repository, the experiment was executed with, detailed log of the computation and other
files necessary to execute the model that has been trained.

LogBook is meant as a complement to using TensorBoard, whose summaries are stored in the same directory structure.

How to run it

You can run the server using the following command:

bin/neuralmonkey-logbook --logdir=<experiments> --port=<port> --host=<host>

where <experiments> is the directory where the experiments are listed and <port> is the number of the port the server
will run on, and <host> is the IP address of the host (defaults to 127.0.0.1, if you want the logbook to be visible to
other computers in the network, set the host to 0.0.0.0)

Then you can navigate in your browser to http://localhost:<port> to view the experiment logs.

1.7.2 TensorBoard

You can use TensorBoard <https://www.tensorflow.org/versions/r0.9/how_tos/summaries_and_tensorboard/index.html>
to visualize your TensorFlow graph, see summaries of quantitative metrics about the execution of your graph, and
show additional data like images that pass through it.

You can start it by following command:

tensorboard --logdir=<experiments>

And then you can navigate in your browser to http://localhost:6006/ (or if the TensorBoard assigns different port) and
view all the summaries about your experiment.

How to read TensorBoard

The step in the TensorBoard is describing how many inputs (not batches) was processed.

1.7. Visualization 91

Neural Monkey Documentation, Release 0.1

1.7.3 Attention Visualization

If you are using an attention decoder, visualization of the soft alignment of each sentence in the first validation batch
will appear in the Images tab in TensorBoard. The images might look like this:

Here, the source sentence is on the vertical axis and the target sentence on the horizontal axis. The size of each image
is max_output_len * max_input_len so most of the time, there will be some blank rows at the bottom and
some trailing columns with “phantom” attention (corresponding to positions after the end of the output sentence).

You can use the tf_save_images.py script to save the whole history of images as a sequence of PNG files:

For the first sentence in the batch
scripts/tf_save_images.py events.out attention_0/image/0 --prefix images/attention_0_

Use feh to view the images as a time-lapse:

feh -g 300x300 -Z --force-aliasing --slideshow-delay 0.2 images/attention_0_*.png

Or enlarge them and turn them into an animated GIF using:

convert images/attention_0_*.png -scale 300x300 images/attention_0.gif

1.8 Advanced Features

1.8.1 Byte Pair Encoding

This is explained in the machine translation tutorial.

92 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

1.8.2 Dropout

Neural networks with a large number of parameters have a serious problem with an overfitting. Dropout is a technique
for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. But during the test time, the dropout is turned
off. More information in https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

If you want to enable dropout on an encoder or on the decoder, you can simply add dropout_keep_prob to the particular
section:

[encoder]
class=encoders.recurrent.SentenceEncoder
dropout_keep_prob=0.8
...

or:

[decoder]
class=decoders.decoder.Decoder
dropout_keep_prob=0.8
...

1.8.3 Pervasive Dropout

Detailed information in https://arxiv.org/abs/1512.05287

If you want allow dropout on the recurrent layer of your encoder, you can add use_pervasive_dropout parameter into
it and then the dropout probability will be used:

[encoder]
class=encoders.recurrent.SentenceEncoder
dropout_keep_prob=0.8
use_pervasive_dropout=True
...

1.8.4 Attention Seeded by GIZA++ Word Alignments

todo: OC to reference the paper and describe how to use this in NM

1.9 Use SGE cluster array job for inference

To speed up the inference, the neuralmonkey-run binary provides the --grid option, which can be used when
running the program as a SGE array job.

The run script make use of the SGE_TASK_ID and SGE_TASK_STEPSIZE environment variables that are set in
each computing node of the array job. If the --grid option is supplied and these variables are present, it runs the
inference only on a subset of the dataset, specified by the variables.

Consider this example test_data.ini:

[main]
test_datasets=[<dataset>]
variables=["path/to/variables.data"]

1.9. Use SGE cluster array job for inference 93

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://arxiv.org/abs/1512.05287

Neural Monkey Documentation, Release 0.1

[dataset]
class=dataset.load_dataset_from_files
s_source="data/source.en"
s_target_out="out/target.de"

If we want to run a model configured in model.ini on this dataset, we can do:

neuralmonkey-run model.ini test_data.ini

And the program executes the model on the dataset loaded from data/source.en and stores the results in out/
target.de.

If the source file is large or if you use a slow inference method (such as beam search), you may want to split the source
file into smaller parts and execute the model on all of them in parallel. If you have access to a SGE cluster, you don’t
have to do it manually - just create an array job and supply the --grid option to the program. Now, suppose that the
source file contains 100,000 sentences and you want to split it to 100 parts and run it on cluster. To accomplish this,
just run:

qsub <qsub_options> -t 1-100000:1000 -b y \
"neuralmonkey-run --grid model.ini test_data.ini"

This will submit 100 jobs to your cluster. Each job will use its SGE_TASK_ID and SGE_TASK_STEPSIZE param-
eters to determine its part of the data to process. It then runs the inference only on the subset of the dataset and stores
the result in a suffixed file.

For example, if the SGE_TASK_ID is 3, the SGE_TASK_STEPSIZE is 100, and the --grid option is specified,
the inference will be run on lines 201 to 300 of the file data/source.en and the output will be written to out/
target.de.0000000200.

After all the jobs are finished, you just need to manually run:

cat out/target.de.* > out/target.de

and delete the intermediate files. (Careful when your file has more than 10^10 lines - you need to concatenate the
intermediate files in the right order!)

1.10 GPU Benchmarks

We have done some benchmarks on our department to find out differences between GPUs and we have decided to
shared them here. Therefore they do not test speed of Neural Monkey, but they test different GPU cards with the same
setup in Neural Monkey.

The benchmark test consisted of one epoch of Machine Translation training in Neural Monkey on a set of fixed data.
The size of the model nicely fit into the 2GB memory, therefore GPUs with more memory could have better results
with bigger models in comparison to CPUs. All GPUs have CUDA8.0

94 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

Setup (cc=cuda capability) Running time
GeForce GTX 1080; cc6.1 9:55:58
GeForce GTX 1080; cc6.1 10:19:40
GeForce GTX 1080; cc6.1 12:34:34
GeForce GTX 1080; cc6.1 13:01:05
GeForce GTX Titan Z; cc3.5 16:05:24
Tesla K40c; cc3.5 22:41:01
Tesla K40c; cc3.5 22:43:10
Tesla K40c; cc3.5 24:19:45
16 cores Intel Xeon Sandy Bridge 2012 CPU 46:33:14
16 cores Intel Xeon Sandy Bridge 2012 CPU 52:36:56
Quadro K2000; cc3.0 59:47:58
8 cores Intel Xeon Sandy Bridge 2012 CPU 60:39:17
GeForce GT 630; cc3.0 103:42:30
8 cores Intel Xeon Westmere 2010 CPU 134:41:22

1.11 Development Guidelines

1.11.1 Github Workflow

This is a brief document about the Neural Monkey development workflow. Its primary aim is to describe the envi-
ronment around the Github repository (e.g. continuous integration tests, documentation), pull requests, code-review,
etc.

This document is written chronologically, from the point of view of a contributor.

Creating an issue

Everytime there is a need to change the codebase, the contributor should create a corresponing issue in the Github
repository.

The name of the issue should be comprehensive, and should summarize the issue in less than 10 words. In the issue
description, all the relevant information should be mentioned, and, if applicable, a sketch of the solution should be
given so the fashion and method of the solution can be subject to further discussion.

Labels

There is a number of label tags to use to provide an easier way to orient among the issues. Here is an explanation
of some of them, so they are not used incorrectly (notably, there is a slight difference between “enhancement” and
“feature”).

• bug: Use when there is something wrong in the current codebase that needs to be fixed. For example, “Random
seeds are not working”

• documentation: Use when the main topic of the issue or pull request is to contribute to the documentation (be it
a rst document or a request for more docstrings)

• tests: Similarly to documentation, use if the main topic of the issue is to write a test or to do changes to the
testing process itself.

• feature: A request for implementing a feature regarding the training of the models or the models themselves,
e.g. “Minimum risk training” or “Implementation of conditional GRU”.

1.11. Development Guidelines 95

https://github.com/ufal/neuralmonkey

Neural Monkey Documentation, Release 0.1

• enhancement: A request for implementing a feature to Neural Monkey aimed at improving the user experience
with the package, e.g. “GPU profiling” or “Logging of config building”.

• help wanted: Used as an additional label, which specify that solving the issue is suitable either for new con-
tributors or for researchers who want to try out a feature, which would be otherwise implemented after a longer
time.

• refactor: Refactor issues are requests for cleaning the codebase, using better ways to achieve the same results,
conforming to a future API, etc. For example, “Rewrite decoder using decorators”

Todo

Replace text with label pictures from Github

Selecting an issue to work on and assigning people

Note: If you want to start working on something and don’t have a preference, check out the issues labeled “Help
wanted”

When you decide to work on an issue, assign yourself to it and describe your plans on how you will proceed (in case
there is no solution sketch provided in the issue description). This way, others may comment on your plans prior to
the work, which can save a lot of time.

Please make sure that you put all additional information as a comment to the issue in case the issue has been discussed
elsewhere.

Creating a branch

Prior to writing code (or at least before the first commit), you should create a branch for solution of the issue. This
command creates a new branch called your_branch_name and switches your working copy to that branch:

$ git checkout -b your_branch_name

Writing code

On the new branch, you can make changes and commit, until your solution is done.

It is worth noting that we are trying to keep our code clean by enforcing some code writing rules and guidelines. These
are automatically check by Travis CI on each push to the Github repository. Here is a list of tools used to check the
quality of the code:

• pylint

• pycodestyle

• mypy

• markdownlint

Todo

provide short description to the tools, check that markdownlint has correct URL

96 Chapter 1. Getting Started

https://www.pylint.org
http://pypi.python.org/pypi/pycodestyle
http://mypy-lang.org
https://github.com/mivok/markdownlint

Neural Monkey Documentation, Release 0.1

You can run the tests on your local machine by using scripts (and requirements) from the tests/ directory of this
package,

This is a usual mantra that you can use for committing and pushing to the remote branch in the repository:

$ git add .
$ git commit -m 'your commit message'
$ git push origin your_branch_name

Note: If you are working on a branch with someone else, it is always a good idea to do a git pull --rebase
before pushing. This command updates your branch with remote changes and apply your new commits on top of them.

Warning: If your commit message contains the string [ci skip] the continuous integration tests are not run.
However, try not to use this feature unless you know what you’re doing.

Creating a pull request

Whenever you want to add a feature or push a bugfix, you should make a new pull request, which can be reviewed and
merged by someone else. The typical workflow should be as follows:

1. Create a new branch, make your changes and push them to the repository.

2. You should now see the new branch on the Github project page. When you open the branch page, click on
“Create Pull request” button.

3. When the pull request is created, the continuous integration tests are run on Travis. You can see the status of
the test run on the pull request page. There is also a link to Travis so you can inspect the results of the test run,
and make additional changes in order to make the tests successful, if needed. Additionally to the code quality
checking tools, unit and regression tests are run as well.

When you create a pull request, assign one or two people to do the review.

Code review and merging

Your pull requests should always be subject to code review. After you create the pull request, select one or two
contributors and assign them to make a review.

This phase consists of discussion about the introduced changes, suggestions, and another requirements made by the
reviewers. Anyone who wants to do a review can contribute, the reviewer roles are not considered exclusive.

After all of the reviewers’ comments have been addressed and the reviewers approved the pull request, the pull request
can be merged. It is usually a good idea to rebase the code to the recent version of master. Assuming your working
copy is switched to the master branch, do:

$ git pull --rebase
$ git checkout your_branch_name
$ git rebase master

These commands first update your local copy of master from the remote repository, then switch your working copy to
the your_branch_name branch, and then rebases the branch on the updated master.

Rebasing is a process in which commits from a branch (your_branch_name) are applied on a second branch
(master), and the new HEAD is marked as the first branch.

1.11. Development Guidelines 97

Neural Monkey Documentation, Release 0.1

Warning: Rebasing is a process which overwrites history. Therefore be absolutely sure that you know what are
you doing. Usually if you work on a branch alone, rebasing is a safe procedure.

When the branch is rebased, you have to force-push it to the repository:

$ git push -f origin your_branch_name

This command overwrites the your branch in the remote repository with your local branch (which is now rebased on
master, and therefore, up-to-date)

Note: You can use rebasing also for updating your branch to work with newer versions of master instead of merging
the master in the branch. Bear in mind though, that you should force-push these updates, so no-one works on the
outdated version of the branch.

Finally, one more round of tests is run and if everything is OK, you can click the “Merge pull request” button, which
executes the merge. You can also click another button to delete the your_branch_name branch from the repository
after the merge.

Documentation

Documentation related to GitHub is written in Markdown files, Python documentation using reStructuredText. This
concerns both the standalone documents (in /docs/) and the docstrings in source code.

Style of the Markdown files is automatically checked using Markdownlint.

1.11.2 Running tests

Every time a commit is pushed to the Github repository, the tests are run on Travis CI.

If you want to run the tests locally, install the required tools:

(nm)$ pip install --upgrade -r <(cat tests/*_requirements.txt)

Test scripts

Test scripts located in the tests directory:

• tests_run.sh runs training with small dataset and small.ini configuration

• unit-tests_run.sh runs unit tests

• lint_run.sh runs pylint

• mypy_run.sh runs mypy

All the scripts should be run from the main directory of the repository. There is also run_tests.sh in the main directory,
that runs all the tests above.

98 Chapter 1. Getting Started

https://daringfireball.net/projects/markdown/
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
https://github.com/mivok/markdownlint
https://github.com/ufal/neuralmonkey
https://travis-ci.org/ufal/neuralmonkey

Python Module Index

n
neuralmonkey, 91
neuralmonkey.attention, 27
neuralmonkey.attention.base_attention,

21
neuralmonkey.attention.combination, 22
neuralmonkey.attention.coverage, 25
neuralmonkey.attention.feed_forward, 25
neuralmonkey.attention.scaled_dot_product,

26
neuralmonkey.checking, 79
neuralmonkey.config, 30
neuralmonkey.config.builder, 27
neuralmonkey.config.configuration, 28
neuralmonkey.config.exceptions, 29
neuralmonkey.config.parsing, 29
neuralmonkey.config.utils, 29
neuralmonkey.dataset, 79
neuralmonkey.decoders, 42
neuralmonkey.decoders.beam_search_decoder,

30
neuralmonkey.decoders.classifier, 32
neuralmonkey.decoders.ctc_decoder, 33
neuralmonkey.decoders.decoder, 34
neuralmonkey.decoders.encoder_projection,

36
neuralmonkey.decoders.output_projection,

37
neuralmonkey.decoders.sequence_labeler,

40
neuralmonkey.decoders.sequence_regressor,

41
neuralmonkey.decoders.word_alignment_decoder,

42
neuralmonkey.decorators, 82
neuralmonkey.encoders, 50
neuralmonkey.encoders.cnn_encoder, 42
neuralmonkey.encoders.facebook_conv, 43
neuralmonkey.encoders.imagenet_encoder,

44
neuralmonkey.encoders.numpy_encoder, 44
neuralmonkey.encoders.raw_rnn_encoder,

45
neuralmonkey.encoders.recurrent, 46
neuralmonkey.encoders.sentence_cnn_encoder,

47
neuralmonkey.encoders.sequence_cnn_encoder,

48
neuralmonkey.evaluators, 54
neuralmonkey.evaluators.accuracy, 50
neuralmonkey.evaluators.average, 50
neuralmonkey.evaluators.beer, 50
neuralmonkey.evaluators.bleu, 50
neuralmonkey.evaluators.bleu_ref, 52
neuralmonkey.evaluators.chrf, 52
neuralmonkey.evaluators.edit_distance,

52
neuralmonkey.evaluators.f1_bio, 52
neuralmonkey.evaluators.gleu, 53
neuralmonkey.evaluators.mse, 53
neuralmonkey.evaluators.multeval, 53
neuralmonkey.evaluators.ter, 54
neuralmonkey.evaluators.wer, 54
neuralmonkey.functions, 82
neuralmonkey.learning_utils, 82
neuralmonkey.logging, 85
neuralmonkey.model, 58
neuralmonkey.model.model_part, 54
neuralmonkey.model.sequence, 55
neuralmonkey.model.stateful, 57
neuralmonkey.nn, 61
neuralmonkey.nn.highway, 58
neuralmonkey.nn.mlp, 58
neuralmonkey.nn.noisy_gru_cell, 58
neuralmonkey.nn.ortho_gru_cell, 59
neuralmonkey.nn.pervasive_dropout_wrapper,

60
neuralmonkey.nn.projection, 60
neuralmonkey.nn.utils, 61

99

Neural Monkey Documentation, Release 0.1

neuralmonkey.processors, 63
neuralmonkey.processors.alignment, 61
neuralmonkey.processors.bpe, 62
neuralmonkey.processors.editops, 62
neuralmonkey.processors.german, 62
neuralmonkey.processors.helpers, 63
neuralmonkey.processors.speech, 63
neuralmonkey.readers, 66
neuralmonkey.readers.audio_reader, 63
neuralmonkey.readers.image_reader, 64
neuralmonkey.readers.numpy_reader, 64
neuralmonkey.readers.plain_text_reader,

65
neuralmonkey.readers.string_vector_reader,

65
neuralmonkey.run, 86
neuralmonkey.runners, 72
neuralmonkey.runners.base_runner, 66
neuralmonkey.runners.beamsearch_runner,

67
neuralmonkey.runners.label_runner, 68
neuralmonkey.runners.logits_runner, 68
neuralmonkey.runners.perplexity_runner,

69
neuralmonkey.runners.plain_runner, 69
neuralmonkey.runners.regression_runner,

70
neuralmonkey.runners.representation_runner,

70
neuralmonkey.runners.runner, 71
neuralmonkey.runners.word_alignment_runner,

72
neuralmonkey.tests, 76
neuralmonkey.tests.test_bleu, 72
neuralmonkey.tests.test_config, 72
neuralmonkey.tests.test_dataset, 73
neuralmonkey.tests.test_decoder, 73
neuralmonkey.tests.test_encoders_init,

73
neuralmonkey.tests.test_eval_wrappers,

73
neuralmonkey.tests.test_functions, 74
neuralmonkey.tests.test_model_part, 74
neuralmonkey.tests.test_nn_utils, 74
neuralmonkey.tests.test_readers, 74
neuralmonkey.tests.test_ter, 75
neuralmonkey.tests.test_vocabulary, 75
neuralmonkey.tf_manager, 86
neuralmonkey.tf_utils, 87
neuralmonkey.train, 87
neuralmonkey.trainers, 79
neuralmonkey.trainers.cross_entropy_trainer,

76

neuralmonkey.trainers.generic_trainer,
77

neuralmonkey.trainers.self_critical_objective,
77

neuralmonkey.vocabulary, 87

100 Python Module Index

Index

A
AccuracyEvaluator (class in neural-

monkey.evaluators.accuracy), 50
AccuracySeqLevelEvaluator (class in neural-

monkey.evaluators.accuracy), 50
adadelta_optimizer() (in module neural-

monkey.config.utils), 29
adam_optimizer() (in module neuralmonkey.config.utils),

30
add_argument() (neural-

monkey.config.configuration.Configuration
method), 29

add_series() (neuralmonkey.dataset.Dataset method), 80
add_series() (neuralmonkey.dataset.LazyDataset

method), 80
add_tokenized_text() (neural-

monkey.vocabulary.Vocabulary method),
87

add_word() (neuralmonkey.vocabulary.Vocabulary
method), 87

alignment_target (neural-
monkey.decoders.word_alignment_decoder.WordAlignmentDecoder
attribute), 42

assert_same_shape() (in module neural-
monkey.checking), 79

assert_shape() (in module neuralmonkey.checking), 79
Attention (class in neural-

monkey.attention.feed_forward), 25
attention() (neuralmonkey.attention.base_attention.BaseAttention

method), 21
attention() (neuralmonkey.attention.combination.FlatMultiAttention

method), 23
attention() (neuralmonkey.attention.combination.HierarchicalMultiAttention

method), 24
attention() (neuralmonkey.attention.combination.MultiAttention

method), 24
attention() (neuralmonkey.attention.feed_forward.Attention

method), 25
attention() (neuralmonkey.attention.scaled_dot_product.MultiHeadAttention

method), 26
attention_loop_states (neural-

monkey.decoders.decoder.LoopState attribute),
35

attention_mask (neural-
monkey.attention.feed_forward.Attention
attribute), 25

attention_single_head() (neural-
monkey.attention.scaled_dot_product.MultiHeadAttention
method), 26

attention_states (neural-
monkey.attention.feed_forward.Attention
attribute), 25

AttentionLoopState (class in neural-
monkey.attention.base_attention), 21

attn_size (neuralmonkey.attention.combination.MultiAttention
attribute), 24

Audio (class in neuralmonkey.readers.audio_reader), 63
audio_reader() (in module neural-

monkey.readers.audio_reader), 64
AverageEvaluator (class in neural-

monkey.evaluators.average), 50

B
BaseAttention (class in neural-

monkey.attention.base_attention), 21
BaseRunner (class in neural-

monkey.runners.base_runner), 66
batch_dataset() (neuralmonkey.dataset.Dataset method),

80
batch_serie() (neuralmonkey.dataset.Dataset method), 80
batch_size (neuralmonkey.decoders.decoder.Decoder at-

tribute), 34
beam_search_runner_range() (in module neural-

monkey.runners.beamsearch_runner), 67
beam_size (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder

attribute), 31
BeamSearchDecoder (class in neural-

monkey.decoders.beam_search_decoder),
30

101

Neural Monkey Documentation, Release 0.1

BeamSearchExecutable (class in neural-
monkey.runners.beamsearch_runner), 67

BeamSearchLoopState (class in neural-
monkey.decoders.beam_search_decoder),
31

BeamSearchRunner (class in neural-
monkey.runners.beamsearch_runner), 67

BeerWrapper (class in neuralmonkey.evaluators.beer), 50
bias_term (neuralmonkey.attention.feed_forward.Attention

attribute), 25
bidirectional_rnn (neural-

monkey.encoders.recurrent.RecurrentEncoder
attribute), 46

bidirectional_rnn (neural-
monkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 48

bind() (neuralmonkey.config.builder.ObjectRef method),
28

bleu() (neuralmonkey.evaluators.bleu.BLEUEvaluator
static method), 50

BLEUEvaluator (class in neuralmonkey.evaluators.bleu),
50

BLEUReferenceImplWrapper (class in neural-
monkey.evaluators.bleu_ref), 52

BPEPostprocessor (class in neural-
monkey.processors.bpe), 62

BPEPreprocessor (class in neural-
monkey.processors.bpe), 62

bs_output (neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState
attribute), 31

bs_state (neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState
attribute), 31

build_config() (in module neuralmonkey.config.builder),
28

build_model() (neuralmonkey.config.configuration.Configuration
method), 29

build_object() (in module neuralmonkey.config.builder),
28

C
call() (neuralmonkey.nn.ortho_gru_cell.NematusGRUCell

method), 59
cell_type (neuralmonkey.encoders.raw_rnn_encoder.RNNSpec

attribute), 45
check_dataset_and_coders() (in module neural-

monkey.checking), 79
CheckingException, 79
child_loop_states (neural-

monkey.attention.combination.HierarchicalLoopState
attribute), 23

ChrFEvaluator (class in neuralmonkey.evaluators.chrf),
52

chunk2set() (neuralmonkey.evaluators.f1_bio.F1Evaluator
static method), 52

classification (neuralmonkey.nn.mlp.MultilayerPerceptron
attribute), 58

Classifier (class in neuralmonkey.decoders.classifier), 32
ClassSymbol (class in neuralmonkey.config.builder), 27
cnn_encoded (neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder

attribute), 48
CNNEncoder (class in neural-

monkey.encoders.cnn_encoder), 42
collect_results() (neural-

monkey.runners.base_runner.Executable
method), 66

collect_results() (neural-
monkey.runners.beamsearch_runner.BeamSearchExecutable
method), 67

collect_results() (neural-
monkey.runners.label_runner.LabelRunExecutable
method), 68

collect_results() (neural-
monkey.runners.logits_runner.LogitsExecutable
method), 68

collect_results() (neural-
monkey.runners.perplexity_runner.PerplexityExecutable
method), 69

collect_results() (neural-
monkey.runners.plain_runner.PlainExecutable
method), 69

collect_results() (neural-
monkey.runners.regression_runner.RegressionRunExecutable
method), 70

collect_results() (neural-
monkey.runners.representation_runner.RepresentationExecutable
method), 71

collect_results() (neural-
monkey.runners.runner.GreedyRunExecutable
method), 71

collect_results() (neural-
monkey.runners.word_alignment_runner.WordAlignmentRunnerExecutable
method), 72

collect_results() (neural-
monkey.trainers.generic_trainer.TrainExecutable
method), 77

column_separated_reader() (in module neural-
monkey.readers.plain_text_reader), 65

compare_scores() (neural-
monkey.evaluators.accuracy.AccuracyEvaluator
static method), 50

compare_scores() (neural-
monkey.evaluators.accuracy.AccuracySeqLevelEvaluator
static method), 50

compare_scores() (neural-
monkey.evaluators.bleu.BLEUEvaluator
static method), 51

compare_scores() (neural-
monkey.evaluators.edit_distance.EditDistanceEvaluator

102 Index

Neural Monkey Documentation, Release 0.1

static method), 52
compare_scores() (neural-

monkey.evaluators.mse.MeanSquaredErrorEvaluator
static method), 53

concat_encoder_projection() (in module neural-
monkey.decoders.encoder_projection), 36

ConfigBuildException, 29
ConfigInvalidValueException, 29
Configuration (class in neural-

monkey.config.configuration), 28
context_vector_size (neural-

monkey.attention.base_attention.BaseAttention
attribute), 21

context_vector_size (neural-
monkey.attention.combination.FlatMultiAttention
attribute), 23

context_vector_size (neural-
monkey.attention.combination.HierarchicalMultiAttention
attribute), 24

context_vector_size (neural-
monkey.attention.feed_forward.Attention
attribute), 25

context_vector_size (neural-
monkey.attention.scaled_dot_product.MultiHeadAttention
attribute), 26

contexts (neuralmonkey.attention.base_attention.AttentionLoopState
attribute), 21

contexts (neuralmonkey.attention.scaled_dot_product.MultiHeadLoopStateTA
attribute), 27

convert_to_edits() (in module neural-
monkey.processors.editops), 62

cost (neuralmonkey.decoders.classifier.Classifier at-
tribute), 32

cost (neuralmonkey.decoders.ctc_decoder.CTCDecoder
attribute), 33

cost (neuralmonkey.decoders.decoder.Decoder attribute),
34

cost (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
attribute), 40

cost (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 41

cost (neuralmonkey.decoders.word_alignment_decoder.WordAlignmentDecoder
attribute), 42

CoverageAttention (class in neural-
monkey.attention.coverage), 25

create() (neuralmonkey.config.builder.ClassSymbol
method), 28

create_config() (in module neuralmonkey.train), 87
CrossEntropyTrainer (class in neural-

monkey.trainers.cross_entropy_trainer), 76
csv_reader() (in module neural-

monkey.readers.plain_text_reader), 65
CTCDecoder (class in neural-

monkey.decoders.ctc_decoder), 33

D
data (neuralmonkey.model.sequence.EmbeddedFactorSequence

attribute), 55
data (neuralmonkey.model.sequence.Sequence attribute),

56
data (neuralmonkey.readers.audio_reader.Audio at-

tribute), 63
data_id (neuralmonkey.model.sequence.EmbeddedSequence

attribute), 56
Dataset (class in neuralmonkey.dataset), 79
debug() (in module neuralmonkey.logging), 85
debug() (neuralmonkey.logging.Logging static method),

85
debug_disabled (neuralmonkey.logging.Logging at-

tribute), 85
debug_enabled (neuralmonkey.logging.Logging at-

tribute), 85
decode() (neuralmonkey.processors.bpe.BPEPostprocessor

method), 62
decode() (neuralmonkey.processors.german.GermanPostprocessor

method), 62
decoded (neuralmonkey.decoders.classifier.Classifier at-

tribute), 32
decoded (neuralmonkey.decoders.ctc_decoder.CTCDecoder

attribute), 33
decoded (neuralmonkey.decoders.decoder.Decoder

attribute), 34
decoded (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

attribute), 40
decoded (neuralmonkey.decoders.sequence_regressor.SequenceRegressor

attribute), 41
decoded_logits (neural-

monkey.decoders.classifier.Classifier attribute),
32

decoded_seq (neuralmonkey.decoders.classifier.Classifier
attribute), 32

Decoder (class in neuralmonkey.decoders.decoder), 34
decoder (neuralmonkey.trainers.generic_trainer.Objective

attribute), 77
decoder_data_id (neural-

monkey.runners.base_runner.BaseRunner
attribute), 66

decoder_data_id (neural-
monkey.runners.beamsearch_runner.BeamSearchRunner
attribute), 67

decoder_loop_state (neural-
monkey.decoders.beam_search_decoder.BeamSearchLoopState
attribute), 31

decoding_b (neuralmonkey.decoders.decoder.Decoder at-
tribute), 34

decoding_w (neuralmonkey.decoders.decoder.Decoder
attribute), 34

deduplicate_sentences() (neural-
monkey.evaluators.bleu.BLEUEvaluator

Index 103

Neural Monkey Documentation, Release 0.1

static method), 51
default_variable_file() (in module neuralmonkey.run), 86
deprecated() (in module neuralmonkey.config.utils), 30
dimension (neuralmonkey.model.sequence.EmbeddedFactorSequence

attribute), 55
dimension (neuralmonkey.model.sequence.Sequence at-

tribute), 56
direction (neuralmonkey.encoders.raw_rnn_encoder.RNNSpec

attribute), 45
dropout() (in module neuralmonkey.nn.utils), 61

E
EditDistanceEvaluator (class in neural-

monkey.evaluators.edit_distance), 52
effective_reference_length() (neural-

monkey.evaluators.bleu.BLEUEvaluator
static method), 51

embed_input_symbol() (neural-
monkey.decoders.decoder.Decoder method),
34

embedded_inputs (neural-
monkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder
attribute), 49

EmbeddedFactorSequence (class in neural-
monkey.model.sequence), 55

EmbeddedSequence (class in neural-
monkey.model.sequence), 56

embedding_matrices (neural-
monkey.model.sequence.EmbeddedFactorSequence
attribute), 55

embedding_matrix (neural-
monkey.decoders.decoder.Decoder attribute),
34

embedding_matrix (neural-
monkey.model.sequence.EmbeddedSequence
attribute), 56

empty_attention_loop_state() (in module neural-
monkey.attention.base_attention), 22

empty_initial_state() (in module neural-
monkey.decoders.encoder_projection), 36

evaluation() (in module neuralmonkey.learning_utils), 82
Executable (class in neuralmonkey.runners.base_runner),

66
execute() (neuralmonkey.tf_manager.TensorFlowManager

method), 86
ExecutionResult (class in neural-

monkey.runners.base_runner), 66

F
f1_score() (neuralmonkey.evaluators.f1_bio.F1Evaluator

static method), 52
F1Evaluator (class in neuralmonkey.evaluators.f1_bio),

52

FactoredEncoder (class in neural-
monkey.encoders.recurrent), 46

feed_dict() (neuralmonkey.attention.base_attention.BaseAttention
method), 21

feed_dict() (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder
method), 31

feed_dict() (neuralmonkey.decoders.classifier.Classifier
method), 32

feed_dict() (neuralmonkey.decoders.ctc_decoder.CTCDecoder
method), 33

feed_dict() (neuralmonkey.decoders.decoder.Decoder
method), 34

feed_dict() (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
method), 40

feed_dict() (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
method), 41

feed_dict() (neuralmonkey.decoders.word_alignment_decoder.WordAlignmentDecoder
method), 42

feed_dict() (neuralmonkey.encoders.cnn_encoder.CNNEncoder
method), 43

feed_dict() (neuralmonkey.encoders.facebook_conv.SentenceEncoder
method), 43

feed_dict() (neuralmonkey.encoders.imagenet_encoder.ImageNet
method), 44

feed_dict() (neuralmonkey.encoders.numpy_encoder.PostCNNImageEncoder
method), 44

feed_dict() (neuralmonkey.encoders.numpy_encoder.VectorEncoder
method), 45

feed_dict() (neuralmonkey.encoders.raw_rnn_encoder.RawRNNEncoder
method), 45

feed_dict() (neuralmonkey.encoders.recurrent.RecurrentEncoder
method), 46

feed_dict() (neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
method), 48

feed_dict() (neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder
method), 49

feed_dict() (neuralmonkey.model.model_part.ModelPart
method), 54

feed_dict() (neuralmonkey.model.sequence.EmbeddedFactorSequence
method), 55

finalize_loop() (neural-
monkey.attention.base_attention.BaseAttention
method), 21

finalize_loop() (neural-
monkey.attention.combination.FlatMultiAttention
method), 23

finalize_loop() (neural-
monkey.attention.combination.HierarchicalMultiAttention
method), 24

finalize_loop() (neural-
monkey.attention.feed_forward.Attention
method), 25

finalize_loop() (neural-
monkey.attention.scaled_dot_product.MultiHeadAttention

104 Index

Neural Monkey Documentation, Release 0.1

method), 27
finished (neuralmonkey.decoders.beam_search_decoder.SearchState

attribute), 31
finished (neuralmonkey.decoders.decoder.LoopState at-

tribute), 35
FlatMultiAttention (class in neural-

monkey.attention.combination), 22
FloatVectorReader() (in module neural-

monkey.readers.string_vector_reader), 65
from_bpe() (in module neuralmonkey.vocabulary), 89
from_dataset() (in module neuralmonkey.vocabulary), 89
from_file() (in module neuralmonkey.vocabulary), 90
from_nematus_json() (in module neural-

monkey.vocabulary), 90
from_wordlist() (in module neuralmonkey.vocabulary),

90

G
GenericTrainer (class in neural-

monkey.trainers.generic_trainer), 77
GermanPostprocessor (class in neural-

monkey.processors.german), 62
GermanPreprocessor (class in neural-

monkey.processors.german), 62
get_attention_mask() (in module neural-

monkey.attention.base_attention), 22
get_attention_states() (in module neural-

monkey.attention.base_attention), 22
get_body() (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder

method), 31
get_body() (neuralmonkey.decoders.decoder.Decoder

method), 35
get_dependencies() (neural-

monkey.model.model_part.ModelPart method),
54

get_encoder_projections() (neural-
monkey.attention.combination.FlatMultiAttention
method), 23

get_energies() (neuralmonkey.attention.coverage.CoverageAttention
method), 25

get_energies() (neuralmonkey.attention.feed_forward.Attention
method), 25

get_executable() (neural-
monkey.runners.base_runner.BaseRunner
method), 66

get_executable() (neural-
monkey.runners.beamsearch_runner.BeamSearchRunner
method), 67

get_executable() (neural-
monkey.runners.label_runner.LabelRunner
method), 68

get_executable() (neural-
monkey.runners.logits_runner.LogitsRunner
method), 69

get_executable() (neural-
monkey.runners.perplexity_runner.PerplexityRunner
method), 69

get_executable() (neural-
monkey.runners.plain_runner.PlainRunner
method), 70

get_executable() (neural-
monkey.runners.regression_runner.RegressionRunner
method), 70

get_executable() (neural-
monkey.runners.representation_runner.RepresentationRunner
method), 71

get_executable() (neural-
monkey.runners.runner.GreedyRunner
method), 71

get_executable() (neural-
monkey.runners.word_alignment_runner.WordAlignmentRunner
method), 72

get_executable() (neural-
monkey.trainers.generic_trainer.GenericTrainer
method), 77

get_initial_loop_state() (neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder
method), 31

get_initial_loop_state() (neural-
monkey.decoders.decoder.Decoder method),
35

get_series() (neuralmonkey.dataset.Dataset method), 80
get_series() (neuralmonkey.dataset.LazyDataset method),

80
get_string_vector_reader() (in module neural-

monkey.readers.string_vector_reader), 65
get_unk_sampled_word_index() (neural-

monkey.vocabulary.Vocabulary method),
87

get_word_index() (neuralmonkey.vocabulary.Vocabulary
method), 88

gleu() (neuralmonkey.evaluators.gleu.GLEUEvaluator
static method), 53

GLEUEvaluator (class in neuralmonkey.evaluators.gleu),
53

glu() (in module neuralmonkey.nn.projection), 60
go_symbols (neuralmonkey.decoders.decoder.Decoder

attribute), 35
gpu_memusage() (in module neuralmonkey.tf_utils), 87
gradients (neuralmonkey.trainers.generic_trainer.Objective

attribute), 77
GreedyRunExecutable (class in neural-

monkey.runners.runner), 71
GreedyRunner (class in neuralmonkey.runners.runner),

71
gt_inputs (neuralmonkey.decoders.classifier.Classifier at-

tribute), 32

Index 105

Neural Monkey Documentation, Release 0.1

H
has_gpu() (in module neuralmonkey.tf_utils), 87
has_series() (neuralmonkey.dataset.Dataset method), 80
has_series() (neuralmonkey.dataset.LazyDataset method),

81
head_weights (neuralmonkey.attention.scaled_dot_product.MultiHeadLoopStateTA

attribute), 27
HEIGHT (neuralmonkey.encoders.imagenet_encoder.ImageNet

attribute), 44
hidden_features (neural-

monkey.attention.feed_forward.Attention
attribute), 25

HierarchicalLoopState (class in neural-
monkey.attention.combination), 23

HierarchicalMultiAttention (class in neural-
monkey.attention.combination), 23

highway() (in module neuralmonkey.nn.highway), 58
highway_layer (neural-

monkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 48

histogram_summaries (neural-
monkey.runners.base_runner.ExecutionResult
attribute), 66

histories (neuralmonkey.attention.base_attention.BaseAttention
attribute), 22

I
ignore_argument() (neural-

monkey.config.configuration.Configuration
method), 29

image_input (neuralmonkey.encoders.cnn_encoder.CNNEncoder
attribute), 43

image_processing_layers (neural-
monkey.encoders.cnn_encoder.CNNEncoder
attribute), 43

image_reader() (in module neural-
monkey.readers.image_reader), 64

image_summaries (neural-
monkey.runners.base_runner.ExecutionResult
attribute), 66

ImageNet (class in neural-
monkey.encoders.imagenet_encoder), 44

imagenet_reader() (in module neural-
monkey.readers.image_reader), 64

IniError, 29
init_saving() (neuralmonkey.tf_manager.TensorFlowManager

method), 86
initial_loop_state() (neural-

monkey.attention.base_attention.BaseAttention
method), 22

initial_loop_state() (neural-
monkey.attention.combination.FlatMultiAttention
method), 23

initial_loop_state() (neural-
monkey.attention.combination.HierarchicalMultiAttention
method), 24

initial_loop_state() (neural-
monkey.attention.feed_forward.Attention
method), 26

initial_loop_state() (neural-
monkey.attention.scaled_dot_product.MultiHeadAttention
method), 27

initial_state (neuralmonkey.decoders.decoder.Decoder at-
tribute), 35

initialize_for_running() (in module neuralmonkey.run),
86

initialize_model_parts() (neural-
monkey.tf_manager.TensorFlowManager
method), 86

initialize_vocabulary() (in module neural-
monkey.vocabulary), 90

input_factors (neuralmonkey.model.sequence.EmbeddedFactorSequence
attribute), 55

input_image (neuralmonkey.encoders.imagenet_encoder.ImageNet
attribute), 44

input_lengths (neuralmonkey.decoders.ctc_decoder.CTCDecoder
attribute), 33

input_mask (neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder
attribute), 49

input_plus_attention() (neural-
monkey.decoders.decoder.Decoder method),
35

input_symbol (neuralmonkey.decoders.decoder.LoopState
attribute), 35

inputs (neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder
attribute), 49

inputs (neuralmonkey.model.sequence.EmbeddedSequence
attribute), 56

instantiate_class() (in module neural-
monkey.config.builder), 28

IntVectorReader() (in module neural-
monkey.readers.string_vector_reader), 65

inverse_sigmoid_decay() (in module neural-
monkey.functions), 82

K
key_projection_matrix (neural-

monkey.attention.feed_forward.Attention
attribute), 26

L
LabelRunExecutable (class in neural-

monkey.runners.label_runner), 68
LabelRunner (class in neural-

monkey.runners.label_runner), 68
last_attns (neuralmonkey.decoders.beam_search_decoder.SearchState

attribute), 31

106 Index

Neural Monkey Documentation, Release 0.1

last_state (neuralmonkey.decoders.beam_search_decoder.SearchState
attribute), 31

last_word_ids (neuralmonkey.decoders.beam_search_decoder.SearchState
attribute), 31

LazyDataset (class in neuralmonkey.dataset), 80
lengths (neuralmonkey.decoders.beam_search_decoder.SearchState

attribute), 31
lengths (neuralmonkey.model.sequence.Sequence at-

tribute), 56
linear_encoder_projection() (in module neural-

monkey.decoders.encoder_projection), 37
load() (neuralmonkey.model.model_part.ModelPart

method), 54
load_dataset_from_files() (in module neural-

monkey.dataset), 81
load_file() (neuralmonkey.config.configuration.Configuration

method), 29
log() (in module neuralmonkey.logging), 85
log() (neuralmonkey.logging.Logging static method), 85
log_file (neuralmonkey.logging.Logging attribute), 85
log_print() (in module neuralmonkey.logging), 85
log_print() (neuralmonkey.logging.Logging static

method), 85
log_sample() (neuralmonkey.vocabulary.Vocabulary

method), 88
Logging (class in neuralmonkey.logging), 85
logits (neuralmonkey.decoders.ctc_decoder.CTCDecoder

attribute), 33
logits (neuralmonkey.decoders.decoder.LoopState at-

tribute), 35
logits (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

attribute), 40
LogitsExecutable (class in neural-

monkey.runners.logits_runner), 68
LogitsRunner (class in neural-

monkey.runners.logits_runner), 68
logprob_sum (neuralmonkey.decoders.beam_search_decoder.SearchState

attribute), 31
logprobs (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

attribute), 40
loop_continue_criterion() (neural-

monkey.decoders.decoder.Decoder method),
35

loop_state (neuralmonkey.attention.combination.HierarchicalLoopState
attribute), 23

LoopState (class in neuralmonkey.decoders.decoder), 35
loss (neuralmonkey.trainers.generic_trainer.Objective at-

tribute), 77
loss_names (neuralmonkey.runners.base_runner.BaseRunner

attribute), 66
loss_names (neuralmonkey.runners.beamsearch_runner.BeamSearchRunner

attribute), 67
loss_names (neuralmonkey.runners.label_runner.LabelRunner

attribute), 68

loss_names (neuralmonkey.runners.logits_runner.LogitsRunner
attribute), 69

loss_names (neuralmonkey.runners.perplexity_runner.PerplexityRunner
attribute), 69

loss_names (neuralmonkey.runners.plain_runner.PlainRunner
attribute), 70

loss_names (neuralmonkey.runners.regression_runner.RegressionRunner
attribute), 70

loss_names (neuralmonkey.runners.representation_runner.RepresentationRunner
attribute), 71

loss_names (neuralmonkey.runners.runner.GreedyRunner
attribute), 71

loss_names (neuralmonkey.runners.word_alignment_runner.WordAlignmentRunner
attribute), 72

loss_with_decoded_ins (neural-
monkey.decoders.classifier.Classifier attribute),
32

loss_with_gt_ins (neural-
monkey.decoders.classifier.Classifier attribute),
32

losses (neuralmonkey.runners.base_runner.ExecutionResult
attribute), 66

M
main() (in module neuralmonkey.run), 86
main() (in module neuralmonkey.train), 87
make_namespace() (neural-

monkey.config.configuration.Configuration
method), 29

mask (neuralmonkey.decoders.decoder.LoopState at-
tribute), 35

mask (neuralmonkey.model.sequence.EmbeddedFactorSequence
attribute), 55

mask (neuralmonkey.model.sequence.Sequence at-
tribute), 56

max_length (neuralmonkey.model.sequence.Sequence at-
tribute), 56

maxout() (in module neuralmonkey.nn.projection), 60
maxout_output() (in module neural-

monkey.decoders.output_projection), 37
MeanSquaredErrorEvaluator (class in neural-

monkey.evaluators.mse), 53
merge_max_counters() (neural-

monkey.evaluators.bleu.BLEUEvaluator
static method), 51

minimum_reference_length() (neural-
monkey.evaluators.bleu.BLEUEvaluator
static method), 51

mlp_output() (in module neural-
monkey.decoders.output_projection), 38

ModelPart (class in neuralmonkey.model.model_part), 54
modified_ngram_precision() (neural-

monkey.evaluators.bleu.BLEUEvaluator
static method), 51

Index 107

Neural Monkey Documentation, Release 0.1

MultEvalWrapper (class in neural-
monkey.evaluators.multeval), 53

MultiAttention (class in neural-
monkey.attention.combination), 24

MultiHeadAttention (class in neural-
monkey.attention.scaled_dot_product), 26

MultiHeadLoopStateTA (class in neural-
monkey.attention.scaled_dot_product), 27

multilayer_projection() (in module neural-
monkey.nn.projection), 60

MultilayerPerceptron (class in neuralmonkey.nn.mlp), 58

N
name (neuralmonkey.model.model_part.ModelPart at-

tribute), 54
name (neuralmonkey.trainers.generic_trainer.Objective

attribute), 77
nematus_output() (in module neural-

monkey.decoders.output_projection), 38
nematus_projection() (in module neural-

monkey.decoders.encoder_projection), 37
NematusGRUCell (class in neural-

monkey.nn.ortho_gru_cell), 59
neuralmonkey (module), 20, 91
neuralmonkey.attention (module), 27
neuralmonkey.attention.base_attention (module), 21
neuralmonkey.attention.combination (module), 22
neuralmonkey.attention.coverage (module), 25
neuralmonkey.attention.feed_forward (module), 25
neuralmonkey.attention.scaled_dot_product (module), 26
neuralmonkey.checking (module), 79
neuralmonkey.config (module), 30
neuralmonkey.config.builder (module), 27
neuralmonkey.config.configuration (module), 28
neuralmonkey.config.exceptions (module), 29
neuralmonkey.config.parsing (module), 29
neuralmonkey.config.utils (module), 29
neuralmonkey.dataset (module), 79
neuralmonkey.decoders (module), 42
neuralmonkey.decoders.beam_search_decoder (module),

30
neuralmonkey.decoders.classifier (module), 32
neuralmonkey.decoders.ctc_decoder (module), 33
neuralmonkey.decoders.decoder (module), 34
neuralmonkey.decoders.encoder_projection (module), 36
neuralmonkey.decoders.output_projection (module), 37
neuralmonkey.decoders.sequence_labeler (module), 40
neuralmonkey.decoders.sequence_regressor (module), 41
neuralmonkey.decoders.word_alignment_decoder (mod-

ule), 42
neuralmonkey.decorators (module), 82
neuralmonkey.encoders (module), 50
neuralmonkey.encoders.cnn_encoder (module), 42
neuralmonkey.encoders.facebook_conv (module), 43

neuralmonkey.encoders.imagenet_encoder (module), 44
neuralmonkey.encoders.numpy_encoder (module), 44
neuralmonkey.encoders.raw_rnn_encoder (module), 45
neuralmonkey.encoders.recurrent (module), 46
neuralmonkey.encoders.sentence_cnn_encoder (module),

47
neuralmonkey.encoders.sequence_cnn_encoder (mod-

ule), 48
neuralmonkey.evaluators (module), 54
neuralmonkey.evaluators.accuracy (module), 50
neuralmonkey.evaluators.average (module), 50
neuralmonkey.evaluators.beer (module), 50
neuralmonkey.evaluators.bleu (module), 50
neuralmonkey.evaluators.bleu_ref (module), 52
neuralmonkey.evaluators.chrf (module), 52
neuralmonkey.evaluators.edit_distance (module), 52
neuralmonkey.evaluators.f1_bio (module), 52
neuralmonkey.evaluators.gleu (module), 53
neuralmonkey.evaluators.mse (module), 53
neuralmonkey.evaluators.multeval (module), 53
neuralmonkey.evaluators.ter (module), 54
neuralmonkey.evaluators.wer (module), 54
neuralmonkey.functions (module), 82
neuralmonkey.learning_utils (module), 82
neuralmonkey.logging (module), 85
neuralmonkey.model (module), 58
neuralmonkey.model.model_part (module), 54
neuralmonkey.model.sequence (module), 55
neuralmonkey.model.stateful (module), 57
neuralmonkey.nn (module), 61
neuralmonkey.nn.highway (module), 58
neuralmonkey.nn.mlp (module), 58
neuralmonkey.nn.noisy_gru_cell (module), 58
neuralmonkey.nn.ortho_gru_cell (module), 59
neuralmonkey.nn.pervasive_dropout_wrapper (module),

60
neuralmonkey.nn.projection (module), 60
neuralmonkey.nn.utils (module), 61
neuralmonkey.processors (module), 63
neuralmonkey.processors.alignment (module), 61
neuralmonkey.processors.bpe (module), 62
neuralmonkey.processors.editops (module), 62
neuralmonkey.processors.german (module), 62
neuralmonkey.processors.helpers (module), 63
neuralmonkey.processors.speech (module), 63
neuralmonkey.readers (module), 66
neuralmonkey.readers.audio_reader (module), 63
neuralmonkey.readers.image_reader (module), 64
neuralmonkey.readers.numpy_reader (module), 64
neuralmonkey.readers.plain_text_reader (module), 65
neuralmonkey.readers.string_vector_reader (module), 65
neuralmonkey.run (module), 86
neuralmonkey.runners (module), 72
neuralmonkey.runners.base_runner (module), 66

108 Index

Neural Monkey Documentation, Release 0.1

neuralmonkey.runners.beamsearch_runner (module), 67
neuralmonkey.runners.label_runner (module), 68
neuralmonkey.runners.logits_runner (module), 68
neuralmonkey.runners.perplexity_runner (module), 69
neuralmonkey.runners.plain_runner (module), 69
neuralmonkey.runners.regression_runner (module), 70
neuralmonkey.runners.representation_runner (module),

70
neuralmonkey.runners.runner (module), 71
neuralmonkey.runners.word_alignment_runner (module),

72
neuralmonkey.tests (module), 76
neuralmonkey.tests.test_bleu (module), 72
neuralmonkey.tests.test_config (module), 72
neuralmonkey.tests.test_dataset (module), 73
neuralmonkey.tests.test_decoder (module), 73
neuralmonkey.tests.test_encoders_init (module), 73
neuralmonkey.tests.test_eval_wrappers (module), 73
neuralmonkey.tests.test_functions (module), 74
neuralmonkey.tests.test_model_part (module), 74
neuralmonkey.tests.test_nn_utils (module), 74
neuralmonkey.tests.test_readers (module), 74
neuralmonkey.tests.test_ter (module), 75
neuralmonkey.tests.test_vocabulary (module), 75
neuralmonkey.tf_manager (module), 86
neuralmonkey.tf_utils (module), 87
neuralmonkey.train (module), 87
neuralmonkey.trainers (module), 79
neuralmonkey.trainers.cross_entropy_trainer (module),

76
neuralmonkey.trainers.generic_trainer (module), 77
neuralmonkey.trainers.self_critical_objective (module),

77
neuralmonkey.vocabulary (module), 87
next_to_execute() (neural-

monkey.runners.base_runner.Executable
method), 66

next_to_execute() (neural-
monkey.runners.beamsearch_runner.BeamSearchExecutable
method), 67

next_to_execute() (neural-
monkey.runners.label_runner.LabelRunExecutable
method), 68

next_to_execute() (neural-
monkey.runners.logits_runner.LogitsExecutable
method), 68

next_to_execute() (neural-
monkey.runners.perplexity_runner.PerplexityExecutable
method), 69

next_to_execute() (neural-
monkey.runners.plain_runner.PlainExecutable
method), 69

next_to_execute() (neural-
monkey.runners.regression_runner.RegressionRunExecutable

method), 70
next_to_execute() (neural-

monkey.runners.representation_runner.RepresentationExecutable
method), 71

next_to_execute() (neural-
monkey.runners.runner.GreedyRunExecutable
method), 71

next_to_execute() (neural-
monkey.runners.word_alignment_runner.WordAlignmentRunnerExecutable
method), 72

next_to_execute() (neural-
monkey.trainers.generic_trainer.TrainExecutable
method), 77

ngram_counts() (neural-
monkey.evaluators.bleu.BLEUEvaluator
static method), 51

noisy_activation() (in module neural-
monkey.nn.noisy_gru_cell), 59

noisy_sigmoid() (in module neural-
monkey.nn.noisy_gru_cell), 59

noisy_tanh() (in module neural-
monkey.nn.noisy_gru_cell), 59

NoisyGRUCell (class in neural-
monkey.nn.noisy_gru_cell), 58

nonlinear_output() (in module neural-
monkey.decoders.output_projection), 39

notice() (in module neuralmonkey.logging), 86
notice() (neuralmonkey.logging.Logging static method),

85
numpy_reader() (in module neural-

monkey.readers.numpy_reader), 64

O
Objective (class in neural-

monkey.trainers.generic_trainer), 77
ObjectRef (class in neuralmonkey.config.builder), 28
order_embeddings (neural-

monkey.encoders.facebook_conv.SentenceEncoder
attribute), 43

ordered_embedded_inputs (neural-
monkey.encoders.facebook_conv.SentenceEncoder
attribute), 43

OrthoGRUCell (class in neural-
monkey.nn.ortho_gru_cell), 59

output (neuralmonkey.encoders.cnn_encoder.CNNEncoder
attribute), 43

output (neuralmonkey.encoders.facebook_conv.SentenceEncoder
attribute), 43

output (neuralmonkey.encoders.imagenet_encoder.ImageNet
attribute), 44

output (neuralmonkey.encoders.numpy_encoder.PostCNNImageEncoder
attribute), 44

output (neuralmonkey.encoders.numpy_encoder.VectorEncoder
attribute), 45

Index 109

Neural Monkey Documentation, Release 0.1

output (neuralmonkey.encoders.raw_rnn_encoder.RawRNNEncoder
attribute), 46

output (neuralmonkey.encoders.recurrent.RecurrentEncoder
attribute), 46

output (neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 48

output (neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder
attribute), 49

output (neuralmonkey.model.stateful.Stateful attribute),
57

output_size (neuralmonkey.nn.noisy_gru_cell.NoisyGRUCell
attribute), 59

output_size (neuralmonkey.nn.pervasive_dropout_wrapper.PervasiveDropoutWrapper
attribute), 60

outputs (neuralmonkey.runners.base_runner.ExecutionResult
attribute), 66

P
parent_ids (neuralmonkey.decoders.beam_search_decoder.SearchStepOutput

attribute), 31
parent_ids (neuralmonkey.decoders.beam_search_decoder.SearchStepOutputTA

attribute), 32
parse_file() (in module neuralmonkey.config.parsing), 29
PerplexityExecutable (class in neural-

monkey.runners.perplexity_runner), 69
PerplexityRunner (class in neural-

monkey.runners.perplexity_runner), 69
PervasiveDropoutWrapper (class in neural-

monkey.nn.pervasive_dropout_wrapper),
60

piecewise_function() (in module neural-
monkey.functions), 82

pipeline() (in module neuralmonkey.processors.helpers),
63

PlainExecutable (class in neural-
monkey.runners.plain_runner), 69

PlainRunner (class in neural-
monkey.runners.plain_runner), 69

PostCNNImageEncoder (class in neural-
monkey.encoders.numpy_encoder), 44

Postprocess (class in neuralmonkey.processors.editops),
62

postprocess_char_based() (in module neural-
monkey.processors.helpers), 63

predictions (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 41

Preprocess (class in neuralmonkey.processors.editops), 62
preprocess_char_based() (in module neural-

monkey.processors.helpers), 63
prev_contexts (neuralmonkey.decoders.decoder.LoopState

attribute), 36
prev_logits (neuralmonkey.decoders.decoder.LoopState

attribute), 36

prev_rnn_output (neural-
monkey.decoders.decoder.LoopState attribute),
36

prev_rnn_state (neural-
monkey.decoders.decoder.LoopState attribute),
36

print_final_evaluation() (in module neural-
monkey.learning_utils), 82

print_header() (neuralmonkey.logging.Logging static
method), 85

projection_bias_vector (neural-
monkey.attention.feed_forward.Attention
attribute), 26

Q
query_projection_matrix (neural-

monkey.attention.feed_forward.Attention
attribute), 26

R
rate (neuralmonkey.readers.audio_reader.Audio at-

tribute), 64
ratio() (neuralmonkey.evaluators.edit_distance.EditDistanceEvaluator

static method), 52
RawRNNEncoder (class in neural-

monkey.encoders.raw_rnn_encoder), 45
reconstruct() (in module neural-

monkey.processors.editops), 62
RecurrentEncoder (class in neural-

monkey.encoders.recurrent), 46
reduce_execution_results() (in module neural-

monkey.runners.base_runner), 66
ref_alignment (neuralmonkey.decoders.word_alignment_decoder.WordAlignmentDecoder

attribute), 42
RegressionRunExecutable (class in neural-

monkey.runners.regression_runner), 70
RegressionRunner (class in neural-

monkey.runners.regression_runner), 70
reinforce_score() (in module neural-

monkey.trainers.self_critical_objective),
77

RepresentationExecutable (class in neural-
monkey.runners.representation_runner),
70

RepresentationRunner (class in neural-
monkey.runners.representation_runner),
71

restore() (neuralmonkey.tf_manager.TensorFlowManager
method), 86

restore_best_vars() (neural-
monkey.tf_manager.TensorFlowManager
method), 86

rnn_cells() (neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
method), 48

110 Index

Neural Monkey Documentation, Release 0.1

rnn_outputs (neuralmonkey.decoders.decoder.LoopState
attribute), 36

RNNSpec (class in neural-
monkey.encoders.raw_rnn_encoder), 45

run_on_dataset() (in module neural-
monkey.learning_utils), 82

runtime_logits (neuralmonkey.decoders.decoder.Decoder
attribute), 35

runtime_logprobs (neural-
monkey.decoders.classifier.Classifier attribute),
32

runtime_logprobs (neural-
monkey.decoders.decoder.Decoder attribute),
35

runtime_loop_result (neural-
monkey.decoders.decoder.Decoder attribute),
35

runtime_loss (neuralmonkey.decoders.classifier.Classifier
attribute), 33

runtime_loss (neuralmonkey.decoders.ctc_decoder.CTCDecoder
attribute), 33

runtime_loss (neuralmonkey.decoders.decoder.Decoder
attribute), 35

runtime_loss (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
attribute), 40

runtime_loss (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 41

runtime_mask (neuralmonkey.decoders.decoder.Decoder
attribute), 35

runtime_rnn_states (neural-
monkey.decoders.decoder.Decoder attribute),
35

S
save() (neuralmonkey.model.model_part.ModelPart

method), 54
save() (neuralmonkey.tf_manager.TensorFlowManager

method), 87
save_file() (neuralmonkey.config.configuration.Configuration

method), 29
save_wordlist() (neuralmonkey.vocabulary.Vocabulary

method), 88
scalar_summaries (neural-

monkey.runners.base_runner.ExecutionResult
attribute), 66

ScaledDotProdAttention (class in neural-
monkey.attention.scaled_dot_product), 27

scores (neuralmonkey.decoders.beam_search_decoder.SearchStepOutput
attribute), 32

scores (neuralmonkey.decoders.beam_search_decoder.SearchStepOutputTA
attribute), 32

SearchState (class in neural-
monkey.decoders.beam_search_decoder),
31

SearchStepOutput (class in neural-
monkey.decoders.beam_search_decoder),
31

SearchStepOutputTA (class in neural-
monkey.decoders.beam_search_decoder),
32

self_critical_objective() (in module neural-
monkey.trainers.self_critical_objective),
78

sentence_bleu() (in module neural-
monkey.trainers.self_critical_objective),
78

sentence_gleu() (in module neural-
monkey.trainers.self_critical_objective),
78

SentenceCNNEncoder (class in neural-
monkey.encoders.sentence_cnn_encoder),
47

SentenceEncoder (class in neural-
monkey.encoders.facebook_conv), 43

SentenceEncoder (class in neural-
monkey.encoders.recurrent), 46

sentences_to_tensor() (neural-
monkey.vocabulary.Vocabulary method),
88

Sequence (class in neuralmonkey.model.sequence), 56
SequenceCNNEncoder (class in neural-

monkey.encoders.sequence_cnn_encoder),
48

SequenceLabeler (class in neural-
monkey.decoders.sequence_labeler), 40

SequenceRegressor (class in neural-
monkey.decoders.sequence_regressor), 41

serialize_to_bytes() (neural-
monkey.evaluators.beer.BeerWrapper method),
50

serialize_to_bytes() (neural-
monkey.evaluators.bleu_ref.BLEUReferenceImplWrapper
method), 52

serialize_to_bytes() (neural-
monkey.evaluators.multeval.MultEvalWrapper
method), 54

series_ids (neuralmonkey.dataset.Dataset attribute), 80
series_ids (neuralmonkey.dataset.LazyDataset attribute),

81
sessions (neuralmonkey.tf_manager.TensorFlowManager

attribute), 86
set_log_file() (neuralmonkey.logging.Logging static

method), 85
setUp() (neuralmonkey.tests.test_eval_wrappers.TestAccuracyEvaluator

method), 73
setUp() (neuralmonkey.tests.test_readers.TestStringVectorReader

method), 74
shuffle() (neuralmonkey.dataset.Dataset method), 80

Index 111

Neural Monkey Documentation, Release 0.1

shuffle() (neuralmonkey.dataset.LazyDataset method), 81
similarity_bias_vector (neural-

monkey.attention.feed_forward.Attention
attribute), 26

size (neuralmonkey.encoders.raw_rnn_encoder.RNNSpec
attribute), 45

softmax (neuralmonkey.nn.mlp.MultilayerPerceptron at-
tribute), 58

spatial_mask (neuralmonkey.encoders.cnn_encoder.CNNEncoder
attribute), 43

spatial_mask (neuralmonkey.encoders.imagenet_encoder.ImageNet
attribute), 44

spatial_mask (neuralmonkey.encoders.numpy_encoder.PostCNNImageEncoder
attribute), 44

spatial_mask (neuralmonkey.model.stateful.SpatialStateful
attribute), 57

spatial_states (neuralmonkey.encoders.cnn_encoder.CNNEncoder
attribute), 43

spatial_states (neuralmonkey.encoders.imagenet_encoder.ImageNet
attribute), 44

spatial_states (neuralmonkey.encoders.numpy_encoder.PostCNNImageEncoder
attribute), 45

spatial_states (neuralmonkey.model.stateful.SpatialStateful
attribute), 57

SpatialStateful (class in neuralmonkey.model.stateful), 57
SpatialStatefulWithOutput (class in neural-

monkey.model.stateful), 57
SpeechFeaturesPreprocessor() (in module neural-

monkey.processors.speech), 63
state_size (neuralmonkey.attention.feed_forward.Attention

attribute), 26
state_size (neuralmonkey.nn.noisy_gru_cell.NoisyGRUCell

attribute), 59
state_size (neuralmonkey.nn.pervasive_dropout_wrapper.PervasiveDropoutWrapper

attribute), 60
Stateful (class in neuralmonkey.model.stateful), 57
states (neuralmonkey.encoders.recurrent.RecurrentEncoder

attribute), 46
states_mask (neuralmonkey.encoders.recurrent.RecurrentEncoder

attribute), 46
step (neuralmonkey.decoders.decoder.LoopState at-

tribute), 36
strict_mode (neuralmonkey.logging.Logging attribute),

85
string_reader() (in module neural-

monkey.readers.plain_text_reader), 65
subset() (neuralmonkey.dataset.Dataset method), 80
subset() (neuralmonkey.dataset.LazyDataset method), 81

T
target (neuralmonkey.config.builder.ObjectRef attribute),

28
tb_embedding_visualization() (neural-

monkey.model.sequence.EmbeddedFactorSequence

method), 55
tearDown() (neuralmonkey.tests.test_readers.TestStringVectorReader

method), 74
temporal_mask (neural-

monkey.encoders.facebook_conv.SentenceEncoder
attribute), 43

temporal_mask (neural-
monkey.encoders.raw_rnn_encoder.RawRNNEncoder
attribute), 46

temporal_mask (neural-
monkey.encoders.recurrent.RecurrentEncoder
attribute), 46

temporal_mask (neural-
monkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 48

temporal_mask (neural-
monkey.model.stateful.TemporalStateful
attribute), 57

temporal_states (neural-
monkey.encoders.facebook_conv.SentenceEncoder
attribute), 43

temporal_states (neural-
monkey.encoders.raw_rnn_encoder.RawRNNEncoder
attribute), 46

temporal_states (neural-
monkey.encoders.recurrent.RecurrentEncoder
attribute), 46

temporal_states (neural-
monkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 48

temporal_states (neural-
monkey.model.stateful.TemporalStateful
attribute), 57

TemporalStateful (class in neuralmonkey.model.stateful),
57

TemporalStatefulWithOutput (class in neural-
monkey.model.stateful), 57

tensor() (in module neuralmonkey.decorators), 82
TensorFlowManager (class in neuralmonkey.tf_manager),

86
TEREvaluator (class in neuralmonkey.evaluators.ter), 54
Test (class in neuralmonkey.tests.test_model_part), 74
test_all_words_in() (neural-

monkey.tests.test_vocabulary.TestVocabulary
method), 75

test_beer() (neuralmonkey.tests.test_eval_wrappers.TestExternalEvaluators
method), 73

test_bleu() (neuralmonkey.tests.test_bleu.TestBLEU
method), 72

test_columns() (neural-
monkey.tests.test_readers.TestStringVectorReader
method), 74

test_count_fail() (neural-
monkey.tests.test_vocabulary.TestVocabulary

112 Index

Neural Monkey Documentation, Release 0.1

method), 75
test_empty_decoded() (neural-

monkey.tests.test_bleu.TestBLEU method),
72

test_empty_decoded() (neural-
monkey.tests.test_ter.TestBLEU method),
75

test_empty_reference() (neural-
monkey.tests.test_bleu.TestBLEU method),
72

test_empty_reference() (neural-
monkey.tests.test_ter.TestBLEU method),
75

test_empty_sentence() (neural-
monkey.tests.test_bleu.TestBLEU method),
72

test_empty_sentence() (neural-
monkey.tests.test_ter.TestBLEU method),
75

test_f1() (neuralmonkey.tests.test_eval_wrappers.TestExternalEvaluators
method), 73

test_gleu() (neuralmonkey.tests.test_eval_wrappers.TestExternalEvaluators
method), 74

test_identical() (neuralmonkey.tests.test_bleu.TestBLEU
method), 72

test_identical() (neuralmonkey.tests.test_ter.TestBLEU
method), 75

test_init() (neuralmonkey.tests.test_decoder.TestDecoder
method), 73

test_invalid_keep_prob() (neural-
monkey.tests.test_nn_utils.TestDropout
method), 74

test_keep_prob() (neural-
monkey.tests.test_nn_utils.TestDropout
method), 74

test_min_freq() (neural-
monkey.tests.test_vocabulary.TestVocabulary
method), 75

test_multeval_bleu() (neural-
monkey.tests.test_eval_wrappers.TestExternalEvaluators
method), 74

test_multeval_meteor() (neural-
monkey.tests.test_eval_wrappers.TestExternalEvaluators
method), 74

test_multeval_ter() (neural-
monkey.tests.test_eval_wrappers.TestExternalEvaluators
method), 74

test_nonexistent_file() (neural-
monkey.tests.test_dataset.TestDataset method),
73

test_padding() (neuralmonkey.tests.test_vocabulary.TestVocabulary
method), 75

test_piecewise_constant() (neural-
monkey.tests.test_functions.TestPiecewiseFunction

method), 74
test_post_cnn_encoder() (neural-

monkey.tests.test_encoders_init.TestEncodersInit
method), 73

test_reader() (neuralmonkey.tests.test_readers.TestStringVectorReader
method), 74

test_save_and_load() (neural-
monkey.tests.test_model_part.Test method),
74

test_sentence_cnn_encoder() (neural-
monkey.tests.test_encoders_init.TestEncodersInit
method), 73

test_sentence_encoder() (neural-
monkey.tests.test_encoders_init.TestEncodersInit
method), 73

test_seq_level_acc() (neural-
monkey.tests.test_eval_wrappers.TestAccuracyEvaluator
method), 73

test_splitter_bad_brackets() (neural-
monkey.tests.test_config.TestParsing method),
72

test_splitter_gen() (in module neural-
monkey.tests.test_config), 72

test_ter() (neuralmonkey.tests.test_ter.TestBLEU
method), 75

test_there_and_back_self() (neural-
monkey.tests.test_vocabulary.TestVocabulary
method), 75

test_train_false() (neural-
monkey.tests.test_nn_utils.TestDropout
method), 74

test_unknown_word() (neural-
monkey.tests.test_vocabulary.TestVocabulary
method), 75

test_vector_encoder() (neural-
monkey.tests.test_encoders_init.TestEncodersInit
method), 73

test_weights() (neuralmonkey.tests.test_vocabulary.TestVocabulary
method), 75

test_word_level_acc() (neural-
monkey.tests.test_eval_wrappers.TestAccuracyEvaluator
method), 73

TestAccuracyEvaluator (class in neural-
monkey.tests.test_eval_wrappers), 73

TestBLEU (class in neuralmonkey.tests.test_bleu), 72
TestBLEU (class in neuralmonkey.tests.test_ter), 75
TestDataset (class in neuralmonkey.tests.test_dataset), 73
TestDecoder (class in neuralmonkey.tests.test_decoder),

73
TestDropout (class in neuralmonkey.tests.test_nn_utils),

74
TestEncodersInit (class in neural-

monkey.tests.test_encoders_init), 73
TestExternalEvaluators (class in neural-

Index 113

Neural Monkey Documentation, Release 0.1

monkey.tests.test_eval_wrappers), 73
TestParsing (class in neuralmonkey.tests.test_config), 72
TestPiecewiseFunction (class in neural-

monkey.tests.test_functions), 74
TestStringVectorReader (class in neural-

monkey.tests.test_readers), 74
TestVocabulary (class in neural-

monkey.tests.test_vocabulary), 75
token_ids (neuralmonkey.decoders.beam_search_decoder.SearchStepOutput

attribute), 32
token_ids (neuralmonkey.decoders.beam_search_decoder.SearchStepOutputTA

attribute), 32
tokenized_text_reader() (in module neural-

monkey.readers.plain_text_reader), 65
total_precision_recall() (neural-

monkey.evaluators.gleu.GLEUEvaluator
static method), 53

train_inputs (neuralmonkey.decoders.decoder.Decoder at-
tribute), 35

train_inputs (neuralmonkey.decoders.decoder.LoopState
attribute), 36

train_inputs (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 41

train_logits (neuralmonkey.decoders.decoder.Decoder at-
tribute), 35

train_logprobs (neuralmonkey.decoders.decoder.Decoder
attribute), 35

train_loss (neuralmonkey.decoders.classifier.Classifier at-
tribute), 33

train_loss (neuralmonkey.decoders.ctc_decoder.CTCDecoder
attribute), 33

train_loss (neuralmonkey.decoders.decoder.Decoder at-
tribute), 35

train_loss (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
attribute), 40

train_loss (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 41

train_mode (neuralmonkey.decoders.classifier.Classifier
attribute), 33

train_mode (neuralmonkey.decoders.ctc_decoder.CTCDecoder
attribute), 33

train_mode (neuralmonkey.decoders.decoder.Decoder at-
tribute), 35

train_mode (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
attribute), 40

train_mode (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 41

train_mode (neuralmonkey.encoders.cnn_encoder.CNNEncoder
attribute), 43

train_mode (neuralmonkey.encoders.facebook_conv.SentenceEncoder
attribute), 43

train_mode (neuralmonkey.encoders.recurrent.RecurrentEncoder
attribute), 46

train_mode (neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder

attribute), 48
train_mode (neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder

attribute), 49
train_padding (neuralmonkey.decoders.decoder.Decoder

attribute), 35
train_targets (neuralmonkey.decoders.ctc_decoder.CTCDecoder

attribute), 33
train_targets (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

attribute), 40
train_weights (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

attribute), 40
train_xents (neuralmonkey.decoders.decoder.Decoder at-

tribute), 35
TrainExecutable (class in neural-

monkey.trainers.generic_trainer), 77
training_loop() (in module neuralmonkey.learning_utils),

83
traverse_combinations() (in module neural-

monkey.tests.test_encoders_init), 73
truncate() (neuralmonkey.vocabulary.Vocabulary

method), 89
truncate_by_min_freq() (neural-

monkey.vocabulary.Vocabulary method),
89

tsv_reader() (in module neural-
monkey.readers.plain_text_reader), 65

U
untruecase() (in module neural-

monkey.processors.helpers), 63
use_scope() (neuralmonkey.model.model_part.ModelPart

method), 54
UtfPlainTextReader() (in module neural-

monkey.readers.plain_text_reader), 65

V
validation_hook() (neural-

monkey.tf_manager.TensorFlowManager
method), 87

variable() (in module neuralmonkey.config.utils), 30
VectorEncoder (class in neural-

monkey.encoders.numpy_encoder), 45
vectors_to_sentences() (neural-

monkey.vocabulary.Vocabulary method),
89

visualize_attention() (neural-
monkey.attention.base_attention.BaseAttention
method), 22

visualize_attention() (neural-
monkey.attention.scaled_dot_product.MultiHeadAttention
method), 27

Vocabulary (class in neuralmonkey.vocabulary), 87
vocabulary (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder

attribute), 31

114 Index

Neural Monkey Documentation, Release 0.1

vocabulary (neuralmonkey.model.sequence.EmbeddedSequence
attribute), 56

W
warn() (in module neuralmonkey.logging), 86
warn() (neuralmonkey.logging.Logging static method),

85
weight (neuralmonkey.trainers.generic_trainer.Objective

attribute), 77
weights (neuralmonkey.attention.base_attention.AttentionLoopState

attribute), 21
WEREvaluator (class in neuralmonkey.evaluators.wer),

54
WIDTH (neuralmonkey.encoders.imagenet_encoder.ImageNet

attribute), 44
WordAlignmentDecoder (class in neural-

monkey.decoders.word_alignment_decoder),
42

WordAlignmentPreprocessor (class in neural-
monkey.processors.alignment), 61

WordAlignmentRunner (class in neural-
monkey.runners.word_alignment_runner),
72

WordAlignmentRunnerExecutable (class in neural-
monkey.runners.word_alignment_runner),
72

write_file() (in module neuralmonkey.config.parsing), 29

X
xent_objective() (in module neural-

monkey.trainers.cross_entropy_trainer), 76

Index 115

	Getting Started
	Python Module Index

