
Neural Monkey Documentation
Release 0.1

Jindřich Libovický, Jindřich Helcl, Tomáš Musil

Sep 14, 2018

Contents

1 Getting Started 3

Python Module Index 123

i

ii

Neural Monkey Documentation, Release 0.1

Neural Monkey is an open-source toolkit for sequence learning using Tensorflow.

If you want to dig in the code, you can browse the repository.

Contents 1

https://github.com/ufal/neuralmonkey

Neural Monkey Documentation, Release 0.1

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

Before you start, make sure that you already have installed Python 3.5, pip and git.

Create and activate a virtual environment to install the package into:

$ python3 -m venv nm
$ source nm/bin/activate
after this, your prompt should change

Then clone Neural Monkey from GitHub and switch to its root directory:

(nm)$ git clone https://github.com/ufal/neuralmonkey
(nm)$ cd neuralmonkey

Run pip to install all requirements. For the CPU version install dependencies by this command:

(nm)$ pip install --upgrade -r requirements.txt

For the GPU version install dependencies try this command:

(nm)$ pip install --upgrade -r requirements-gpu.txt

If you are using the GPU version, make sure that the LD_LIBRARY_PATH environment variable points to lib and
lib64 directories of your CUDA and CuDNN installations. Similarly, your PATH variable should point to the bin
subdirectory of the CUDA installation directory.

You made it! Neural Monkey is now installed!

1.1.1 Note for Ubuntu 14.04 Users

If you get Segmentation fault errors at the very end of the training process, you can either ignore it, or follow the steps
outlined in this document.

3

ubuntu1404_fix.html

Neural Monkey Documentation, Release 0.1

1.2 Package Overview

This overview should provide you with the basic insight on how Neural Monkey conceptualizes the problem of
sequence-to-sequence learning and how the data flow during training and running models looks like.

1.2.1 Loading and Processing Datasets

We call a dataset a collection of named data series. By a series we mean a list of data items of the same type
representing one type of input or desired output of a model. In the simple case of machine translation, there are two
series: a list of source-language sentences and a list of target-language sentences.

The following scheme captures how a dataset is created from input data.

The dataset is created in the following steps:

1. An input file is read using a reader. Reader can e.g., load a file containing paths to JPEG images and load them
as numpy arrays, or read a tokenized text as a list of lists (sentences) of string tokens.

2. Series created by the readers can be preprocessed by some series-level preprocessors. An example of such
preprocessing is byte-pair encoding which loads a list of merges and segments the text accordingly.

3. The final step before creating a dataset is applying dataset-level preprocessors which can take more series and
output a new series.

Currently there are two implementations of a dataset. An in-memory dataset which stores all data in the memory and a
lazy dataset which gradually reads the input files step by step and only stores the batches necessary for the computation
in the memory.

1.2.2 Training and Running a Model

This section describes the training and running workflow. The main concepts and their interconnection can be seen in
the following scheme.

The dataset series can be used to create a vocabulary. A vocabulary represents an indexed set of tokens and provides
functionality for converting lists of tokenized sentences into matrices of token indices and vice versa. Vocabularies are
used by encoders and decoders for feeding the provided series into the neural network.

The model itself is defined by encoders and decoders. Most of the TensorFlow code is in the encoders and decoders.
Encoders are parts of the model which take some input and compute a representation of it. Decoders are model parts
that produce some outputs. Our definition of encoders and decoders is more general than in the classical sequence-to-
sequence learning. An encoder can be for example a convolutional network processing an image. The RNN decoder
is for us only a special type of decoder, it can be also a sequence labeler or a simple multilayer-perceptron classifier.

Decoders are executed using so-called runners. Different runners represent different ways of running the model. We
might want to get a single best estimation, get an n-best list or a sample from the model. We might want to use an
RNN decoder to get the decoded sequences or we might be interested in the word alignment obtained by its attention
model. This is all done by employing different runners over the decoders. The outputs of the runners can be subject
of further post-processing.

Additionally to runners, each training experiment has to have its trainer. A trainer is a special case of a runner that
actually modifies the parameters of the model. It collects the objective functions and uses them in an optimizer.

Neural Monkey manages TensorFlow sessions using an object called TensorFlow manager. Its basic capability is to
execute runners on provided datasets.

4 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

1.3 Post-Editing Task Tutorial

This tutorial will guide you through designing your first experiment in Neural Monkey.

Before we get started with the tutorial, please check that you have the Neural Monkey package properly installed and
working.

1.3.1 Part I. - The Task

This section gives an overall description of the task we will try to solve in this tutorial. To make things more interesting
than plain machine translation, let’s try automatic post-editing task (APE, rhyming well with Neural Monkey).

In short, automatic post-editing is a task, in which we have a source language sentence (let’s call it f, as grown-ups
do), a machine-translated sentence of f (I actually don’t know what grown-ups call this, so let’s call this e'), and we
are expected to generate another sentence in the same language as e' but cleaned of all the errors that the machine
translation system have made (let’s call this cleaned sentence e). Consider this small example:

Source sentence f: Bärbel hat eine Katze.

Machine-translated sentence e': Bärbel has a dog.

Corrected translation e: Bärbel has a cat.

In the example, the machine translation system wrongly translated the German word “Katze” as the English word
“dog”. It is up to the post-editing system to fix this error.

In theory (and in practice), we regard the machine translation task as searching for a target sentence e* that has the
highest probability of being the translation given the source sentence f. You can put it to a formula:

e* = argmax_e p(e|f)

In the post-editing task, the formula is slightly different:

e* = argmax_e p(e|f, e')

If you think about this a little, there are two ways one can look at this task. One is that we are translating the machine-
translated sentence from a kind of synthetic language into a proper one, with additional knowledge what the source
sentence was. The second view regards this as an ordinary machine translation task, with a little help from another
MT system.

In our tutorial, we will assume the MT system used to produce the sentence e' was good enough. We thus generally
trust it and expect only to make small edits to the translated sentence in order to make it fully correct. This means that
we don’t need to train a whole new MT system that would translate the source sentences from scratch. Instead, we
will build a system that will tell us how to edit the machine translated sentence e'.

1.3.2 Part II. - The Edit Operations

How can an automatic system tell us how to edit a sentence? Here’s one way to do it: We will design a set of edit
operations and train the system to generate a sequence of these operations. If we consider a sequence of edit operations
a function R (as in rewrite), which transforms one sequence to another, we can adapt the formulas above to suit our
needs more:

R* = argmax_R p(R(e')|f, e')
e* = R*(e')

1.3. Post-Editing Task Tutorial 5

Neural Monkey Documentation, Release 0.1

So we are searching for the best edit function R* that, once applied to e', will give us the corrected output e*.
Another question is what the class of all possible edit functions should look like, for now we simply limit them to
functions that can be defined as sequences of edit operations.

The edit function R processes the input sequence token-by-token in left-to-right direction. It has a pointer to the input
sequence, which starts by pointing to the first word of the sequence.

We design three types of edit operations as follows:

1. KEEP - this operation copies the current word to the output and moves the pointer to the next token of the input,

2. DELETE - this operation does not emit anything to the output and moves the pointer to the next token of the
input,

3. INSERT - this operation puts a word on the output, leaving the pointer to the input intact.

The edit function applies all its operations to the input sentence. We handle malformed edit sequences simply: if the
pointer reaches the end of the input seqence, operations KEEP and DELETE do nothing. If the sequence of edits ends
before the end of the input sentence is reached, we apply as many additional KEEP operations as needed to reach the
end of the input sequence.

Let’s see another example:

Bärbel has a dog .
KEEP KEEP KEEP DELETE cat KEEP

The word “cat” on the second line is an INSERT operation parameterized by the word “cat”. If we apply all the edit
operations to the input (i.e. keep the words “Bärbel”, “has”, “a”, and “.”, delete the word “dog” and put the word “cat”
in its place), we get the corrected target sentence.

1.3.3 Part III. - The Data

We are going to use the data for WMT 16 shared APE task. You can get them at the WMT 16 website or directly at
the Lindat repository. There are three files in the repository:

1. TrainDev.zip - contains training and development data set

2. Test.zip - contains source and translated test data

3. test_pe.zip - contains the post-edited test data

Now - before we start, let’s create our experiment directory, in which we will place all our work. We shall call it for
example exp-nm-ape (feel free to choose another weird string).

Extract all the files into the exp-nm-ape/data directory. Rename the files and directories so you get this directory
structure:

exp-nm-ape
|
\== data

|
|== train
| |
| |== train.src
| |== train.mt
| \== train.pe
|
|== dev
| |
| |== dev.src

(continues on next page)

6 Chapter 1. Getting Started

http://www.statmt.org/wmt16/ape-task.html
http://hdl.handle.net/11372/LRT-1632

Neural Monkey Documentation, Release 0.1

(continued from previous page)

| |== dev.mt
| \== dev.pe
|
\== test

|
|== test.src
|== test.mt
\== test.pe

The data is already tokenized so we don’t need to run any preprocessing tools. The format of the data is plain text
with one sentence per line. There are 12k training triplets of sentences, 1k development triplets and 2k of evaluation
triplets.

Preprocessing of the Data

The next phase is to prepare the post editing sequences that we should learn during training. We apply the Levenshtein
algorithm to find the shortest edit path from the translated sentence to the post-edited sentence. As a little coding
excercise, you can implement your own script that does the job, or you may use our preprocessing script from the
Neural Monkey package. For this, in the neuralmonkey root directory, run:

scripts/postedit_prepare_data.py \
--translated-sentences=exp-nm-ape/data/train/train.mt \
--target-sentences=exp-nm-ape/data/train/train.pe \

> exp-nm-ape/data/train/train.edits

And the same for the development data.

NOTE: You may have to change the path to the exp-nm-ape directory if it is not located inside the repository root
directory.

NOTE 2: There is a hidden option of the preparation script (--target-german=True) which turns on some steps
tailored for better processing of German text. In this tutorial, we are not going to use it.

If you look at the preprocessed files, you will see that the KEEP and DELETE operations are represented with special
tokens while the INSERT operations are represented simply with the word they insert.

Congratulations! Now, you should have train.edits, dev.edits and test.edits files all in their respective data directories.
We can now move to work with Neural Monkey configurations!

1.3.4 Part IV. - The Model Configuration

In Neural Monkey, all information about a model and its training is stored in configuration files. The syntax of
these files is a plain INI syntax (more specifically, the one which gets processed by Python’s ConfigParser). The
configuration file is structured into a set of sections, each describing a part of the training. In this section, we will go
through all of them and write our configuration file needed for the training of the post-editing task.

First of all, create a file called post-edit.ini and put it inside the exp-nm-ape directory. Put all the snippets
that we will describe in the following paragraphs into the file.

1 - Datasets

For training, we prepare two datasets. The first dataset will serve for the training, the second one for validation. In
Neural Monkey, each dataset contains a number of so called data series. In our case, we will call the data series source,
translated, and edits. Each of those series will contain the respective set of sentences.

1.3. Post-Editing Task Tutorial 7

Neural Monkey Documentation, Release 0.1

It is assumed that all series within a given dataset have the same number of elements (i.e. sentences in our case).

The configuration of the datasets looks like this:

[train_dataset]
class=dataset.load_dataset_from_files
s_source="exp-nm-ape/data/train/train.src"
s_translated="exp-nm-ape/data/train/train.mt"
s_edits="exp-nm-ape/data/train/train.edits"

[val_dataset]
class=dataset.load_dataset_from_files
s_source="exp-nm-ape/data/dev/dev.src"
s_translated="exp-nm-ape/data/dev/dev.mt"
s_edits="exp-nm-ape/data/dev/dev.edits"

Note that series names (source, translated, and edits) are arbitrary and defined by their first mention. The s_ prefix
stands for “series” and is used only here in the dataset sections, not later when the series are referred to.

These two INI sections represent two calls to function neuralmonkey.config.dataset_from_files, with
the series file paths as keyword arguments. The function serves as a constructor and builds an object for every call. So
at the end, we will have two objects representing the two datasets.

2 - Vocabularies

Each encoder and decoder which deals with language data operates with some kind of vocabulary. In our case, the
vocabulary is just a list of all unique words in the training data. Note that apart the special <keep> and <delete>
tokens, the vocabularies for the translated and edits series are from the same language. We can save some memory
and perhaps improve quality of the target language embeddings by share vocabularies for these datasets. Therefore,
we need to create only two vocabulary objects:

[source_vocabulary]
class=vocabulary.from_dataset
datasets=[<train_dataset>]
series_ids=["source"]
max_size=50000

[target_vocabulary]
class=vocabulary.from_dataset
datasets=[<train_dataset>]
series_ids=["edits", "translated"]
max_size=50000

The first vocabulary object (called source_vocabulary) represents the (English) vocabulary used for this task.
The 50,000 is the maximum size of the vocabulary. If the actual vocabulary of the data was bigger, the rare words
would be replaced by the <unk> token (hardcoded in Neural Monkey, not part of the 50,000 items), which stands for
unknown words. In our case, however, the vocabularies of the datasets are much smaller so we won’t lose any words.

Both vocabularies are created out of the training dataset, as specified by the line datasets=[<train_dataset>]
(more datasets could be given in the list). This means that if there are any unseen words in the development or test
data, our model will treat them as unknown words.

We know that the languages in the translated series and edits are the same (except for the KEEP and
DELETE tokens in the edits), so we create a unified vocabulary for them. This is achieved by specifying
series_ids=[edits, translated]. The one-hot encodings (or more precisely, indices to the vocabulary)
will be identical for words in translated and edits.

8 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

3 - Encoders

Our network will have two inputs. Therefore, we must design two separate encoders. The first encoder will process
source sentences, and the second will process translated sentences, i.e. the candidate translations that we are expected
to post-edit. This is the configuration of the encoder for the source sentences:

[src_encoder]
class=encoders.recurrent.SentenceEncoder
rnn_size=300
max_input_len=50
embedding_size=300
dropout_keep_prob=0.8
data_id="source"
name="src_encoder"
vocabulary=<source_vocabulary>

This configuration initializes a new instance of sentence encoder with the hidden state size set to 300 and the maximum
input length set to 50. (Longer sentences are trimmed.) The sentence encoder looks up the words in a word embedding
matrix. The size of the embedding vector used for each word from the source vocabulary is set to 300. The source
data series is fed to this encoder. 20% of the weights is dropped out during training from the word embeddings and
from the attention vectors computed over the hidden states of this encoder. Note the name attribute must be set in
each encoder and decoder in order to prevent collisions of the names of Tensorflow graph nodes.

The configuration of the second encoder follows:

[trans_encoder]
class=encoders.recurrent.SentenceEncoder
rnn_size=300
max_input_len=50
embedding_size=300
dropout_keep_prob=0.8
data_id="translated"
name="trans_encoder"
vocabulary=<target_vocabulary>

This config creates a second encoder for the translated data series. The setting is the same as for the first encoder,
except for the different vocabulary and name.

To be able to use the attention mechanism, we need to define the attention components for each encoder we want to
process. In our tutorial, we use attention over both of the encoders:

[src_attention]
class=attention.Attention
name="attention_src_encoder"
encoder=<src_encoder>
dropout_keep_prob=0.8
state_size=300

[trans_attention]
class=attention.Attention
name="attention_trans_encoder"
encoder=<trans_encoder>
dropout_keep_prob=0.8
state_size=300

1.3. Post-Editing Task Tutorial 9

Neural Monkey Documentation, Release 0.1

4 - Decoder

Now, we configure perhaps the most important object of the training - the decoder. Without further ado, here it goes:

[decoder]
class=decoders.decoder.Decoder
name="decoder"
encoders=[<trans_encoder>, <src_encoder>]
attentions=[<trans_attention>, <src_attention>]
rnn_size=300
max_output_len=50
embeddings_source=<trans_encoder.input_sequence>
dropout_keep_prob=0.8
data_id="edits"
vocabulary=<target_vocabulary>

As in the case of encoders, the decoder needs its RNN and embedding size settings, maximum output length, dropout
parameter, and vocabulary settings.

The outputs of the individual encoders are by default simply concatenated and projected to the decoder hidden state
(of rnn_size). Internally, the code is ready to support arbitrary mappings by adding one more parameter here:
encoder_projection. For an additional view on the encoders, we use the two attention mechanism objects
defined in the previous section.

Note that you may set rnn_size to None. Neural Monkey will then directly use the concatenation of encoder states
without any mapping. This is particularly useful when you have just one encoder as in MT.

The line embeddings_encoder=<trans_encoder.input_sequence> means that the embeddings (in-
cluding embedding size) are to be shared with the input sequence object of the trans_encoder (the input sequence
object is an underlying structure that manages the input layer of an encoder and, in case of SentenceEncoder,
provides access to the word embeddings.

The loss of the decoder is computed against the edits data series of whatever dataset the decoder will be applied to.

5 - Runner and Trainer

As their names suggest, runners and trainers are used for running and training models. The trainer object provides
the optimization operation to the graph. In the case of the cross entropy trainer (used in our tutorial), the default
optimizer is Adam and it is run against the decoder’s loss, with added L2 regularization (controlled by the l2_weight
parameter of the trainer). The runner is used to process a dataset by the model and return the decoded sentences, and
(if possible) decoder losses.

We define these two objects like this:

[trainer]
class=trainers.cross_entropy_trainer.CrossEntropyTrainer
decoders=[<decoder>]
l2_weight=1.0e-8

[runner]
class=runners.runner.GreedyRunner
decoder=<decoder>
output_series="greedy_edits"

Note that a runner can only have one decoder, but during training you can train several decoders, all contributing to
the loss function.

10 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

The purpose of the trainer is to optimize the model, so we are not interested in the actual outputs it produces, only the
loss compared to the reference outputs (and the loss is calculated by the given decoder).

The purpose of the runner is to get the actual outputs and for further use, they are collected to a new series called
greedy_edits (see the line output_series=) of whatever dataset the runner will be applied to.

6 - Evaluation Metrics

During validation, the whole validation dataset gets processed by the models and the decoded sentences are evaluated
against a reference to provide the user with the state of the training. For this, we need to specify evaluator objects
which will be used to score the outputted sentences. In our case, we will use BLEU and TER:

[bleu]
class=evaluators.bleu.BLEUEvaluator
name="BLEU-4"

7 - TensorFlow Manager

In order to handle global variables such as how many CPU cores TensorFlow should use, you need to specify a
“TensorFlow manager”:

[tf_manager]
class=tf_manager.TensorFlowManager
num_threads=4
num_sessions=1
minimize_metric=True
save_n_best=3

8 - Main Configuration Section

Almost there! The last part of the configuration puts all the pieces together. It is called main and specifies the rest of
the training parameters:

[main]
name="post editing"
output="exp-nm-ape/training"
runners=[<runner>]
tf_manager=<tf_manager>
trainer=<trainer>
train_dataset=<train_dataset>
val_dataset=<val_dataset>
evaluation=[("greedy_edits", "edits", <bleu>), ("greedy_edits", "edits", evaluators.
→˓ter.TER)]
batch_size=128
runners_batch_size=256
epochs=100
validation_period=1000
logging_period=20

The output parameter specifies the directory, in which all the files generated by the training (used for replicability
of the experiment, logging, and saving best models variables) are stored. It is also worth noting, that if the output
directory exists, the training is not run, unless the line overwrite_output_dir=True is also included here.

The runners, tf_manager, trainer, train_dataset and val_dataset options are self-explanatory.

1.3. Post-Editing Task Tutorial 11

Neural Monkey Documentation, Release 0.1

The parameter evaluation takes list of tuples, where each tuple contains: - the name of output series (as produced
by some runner), greedy_edits here, - the name of the reference series of the dataset, edits here, - the reference
to the evaluation algorithm, <bleu> and evaluators.ter.TER in the two tuples here.

The batch_size parameter controls how many sentences will be in one training mini-batch. When the model does
not fit into GPU memory, it might be a good idea to start reducing this number before anything else. The larger the
batch size, however, the sooner the training should converge to the optimum.

Runners are less memory-demanding, so runners_batch_size can be set higher than batch_size.

The epochs parameter specifies the number of passes through the training data that the training loop should do.
There is no early stopping mechanism in Neural Monkey yet, the training can be resumed after the end, however. The
training can be safely ctrl+C’ed in any time: Neural Monkey preserves the last save_n_best best model variables
saved on the disk.

The validation and logging periods specify how often to measure the model’s performance on the training batch
(logging_period) or on validation data (validation_period). Note that both logging and validation involve
running the runners over the current batch or the validation data, resp. If this happens too often, the time needed to
train the model can significantly grow.

At each validation (and logging), the output is scored using the specified evaluation metrics. The last of the evaluation
metrics (TER in our case) is used to keep track of the model performance over time. Whenever the score on validation
data is better than any of the save_n_best (3 in our case) previously saved models, the model is saved, discaring
unneccessary lower scoring models.

1.3.5 Part V. - Running an Experiment

Now that we have prepared the data and the experiment INI file, we can run the training. If your Neural Monkey
installation is OK, you can just run this command from the root directory of the Neural Monkey repository:

bin/neuralmonkey-train exp-nm-ape/post-edit.ini

You should see the training program reporting the parsing of the configuration file, initializing the model, and eventu-
ally the training process. If everything goes well, the training should run for 100 epochs. You should see a new line
with the status of the model’s performance on the current batch every few seconds, and there should be a validation
report printed every few minutes.

As given in the main.output config line, the Neural Monkey creates the directory experiments/training
with these files:

• git_commit - the Git hash of the current Neural Monkey revision.

• git_diff - the diff between the clean checkout and the working copy.

• experiment.ini - the INI file used for running the training (a simple copy of the file NM was started with).

• experiment.log - the output log of the training script.

• checkpoint - file created by Tensorflow, keeps track of saved variables.

• events.out.tfevents.<TIME>.<HOST> - file created by Tensorflow, keeps the summaries for Tensor-
Board visualisation

• variables.data[.<N>] - a set of files with N best saved models.

• variables.data.best - a symbolic link that points to the variable file with the best model.

12 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

1.3.6 Part VI. - Evaluation of the Trained Model

If you have reached this point, you have nearly everything this tutorial offers. The last step of this tutorial is to take
the trained model and to apply it to a previously unseen dataset. For this you will need two additional configuration
files. But fear not - it’s not going to be that difficult. The first configuration file is the specification of the model. We
have this from Part III and a small optional change is needed. The second configuration file tells the run script which
datasets to process.

The optional change of the model INI file prevents the training dataset from loading. This is a flaw in the present
design and it is planned to change. The procedure is simple:

1. Copy the file post-edit.ini into e.g. post-edit.test.ini

2. Open the post-edit.test.ini file and remove the train_dataset and val_dataset sections, as
well as the train_dataset and val_dataset configuration from the [main] section.

Now we have to make another file specifying the testing dataset configuration. We will call this file
post-edit_run.ini:

[main]
test_datasets=[<eval_data>]

[eval_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-ape/data/test/test.src"
s_translated="exp-nm-ape/data/test/test.mt"
s_greedy_edits_out="exp-nm-ape/test_output.edits"

The dataset specifies the two input series s_source and s_translated (the candidate MT output output to be
post-edited) as in the training. The series s_edits (containing reference edits) is not present in the evaluation
dataset, because we do not want to use the reference edits to compute loss at this point. Usually, we don’t even know
the correct output at runtime.

Instead, we introduce the output series s_greedy_edits_out (the prefix s_ and the suffix _out are hardcoded
in Neural Monkey and the series name in between has to match the name of the series produced by the runner).

The line s_greedy_edits_out= specifies the file where the output should be saved. (You may want to alter the
path to the exp-nm-ape directory if it is not located inside the Neural Monkey package root dir.)

We have all that we need to run the trained model on the evaluation dataset. From the root directory of the Neural
Monkey repository, run:

bin/neuralmonkey-run exp-nm-ape/post-edit.test.ini exp-nm-ape/post-edit_run.ini

At the end, you should see a new file exp-nm-ape/test_output.edits. As you notice, the contents of this
file are the sequences of edit operations, which if applied to the machine translated sentences, generate the output that
we want. The final step is to call the provided post-processing script. Again, feel free to write your own as a simple
exercise:

scripts/postedit_reconstruct_data.py \
--edits=exp-nm-ape/test_output.edits \
--translated-sentences=exp-nm-ape/data/test/test.mt \
> test_output.pe

Now, you can run the official tools (like mteval or the tercom software available on the WMT 16 website) to measure
the score of test_output.pe on the data/test/test.pe reference evaluation dataset.

1.3. Post-Editing Task Tutorial 13

http://www.statmt.org/wmt16/ape-task.html

Neural Monkey Documentation, Release 0.1

1.3.7 Part VII. - Conclusions

This tutorial gave you the basic overview of how to design your experiments using Neural Monkey. The sample
experiment was the task of automatic post-editing. We got the data from the WMT 16 APE shared task and pre-
processed them to fit our needs. We have written the configuration file and run the training. At the end, we evaluated
the model on the test dataset.

If you want to learn more, the next step is perhaps to browse the examples directory in Neural Monkey repository
and see some further possible setups. If you are planning to just design an experiment using existing modules, you can
start by editing one of those examples as well.

If you want to dig in the code, you can browse the repository. Please feel free to fork the repository and to send us
pull requests. The API documentation is currently under construction, but it already contains a little information about
Neural Monkey objects and their configuraiton options.

Have fun!

1.4 Machine Translation Tutorial

This tutorial will guide you through designing Machnine Translation experiments in Neural Monkey. We assumes that
you already read the post-editing tutorial.

The goal of the translation task is to translate sentences from one language into another. For this tutorial we use data
from the WMT 16 IT-domain translation shared task on English-to-Czech direction.

WMT is an annual machine translation conference where academic groups compete in translating different datasets
over various language pairs.

1.4.1 Part I. - The Data

We are going to use the data for the WMT 16 IT-domain translation shared task. You can get them at the WMT IT
Translation Shared Task webpage and there download Batch1 and Batch2 answers and Batch3 as a testing set. Or
directly here and testset.

Note: In this tutorial we are using only small dataset as an example, which is not big enough for real-life machine
translation training.

We find several files for different languages in the downloaded archive. From which we use only the following files as
our training, validation and test set:

1. ``Batch1a_cs.txt and Batch1a_en.txt`` as our Training set
2. ``Batch2a_cs.txt and Batch2a_en.txt`` as a Validation set
3. ``Batch3a_en.txt`` as a Test set

Now - before we start, let’s make our experiment directory, in which we place all our work. Let’s call it exp-nm-mt.

First extract all the downloaded files, then make gzip files from individual files and put arrange them into the following
directory structure:

exp-nm-mt
|
\== data

|
|== train
| |
| |== Batch1a_en.txt.gz

(continues on next page)

14 Chapter 1. Getting Started

https://github.com/ufal/neuralmonkey
http://neural-monkey.readthedocs.io/
http://www.statmt.org/wmt16/
http://www.statmt.org/wmt16/it-translation-task.html
http://www.statmt.org/wmt16/it-translation-task.html
http://ufallab.ms.mff.cuni.cz/~popel/batch1and2.zip
http://ufallab.ms.mff.cuni.cz/~popel/batch3.zip

Neural Monkey Documentation, Release 0.1

(continued from previous page)

| \== Batch1a_cs.txt.gz
|
|== dev
| |
| |== Batch2a_en.txt.gz
| \== Batch2a_cs.txt.gz
|
\== test

|
\== Batch3a_en.txt.gz

The gzipping is not necessary, if you put the dataset there in plaintext, it will work the same way. Neural Mon-
key recognizes gzipped files by their MIME

type and chooses the correct way to open them.

TODO The dataset is not tokenized and need to be preprocessed.

Byte Pair Encoding

Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-
vocabulary problem. Byte pair encoding (BPE) enables NMT model translation on open-vocabulary by encoding
rare and unknown words as sequences of subword units. This is based on an intuition that various word classes are
translatable via smaller units than words. More information in the paper https://arxiv.org/abs/1508.07909 BPE creates
a list of merges that are used for splitting out-of-vocabulary words. Example of such splitting:

basketball => basket@@ ball

Postprocessing can be manually done by:

sed "s/@@ //g"

but Neural Monkey manages it for you.

BPE Generation

In order to use BPE, you must first generate merge_file, over all data. This file is generated on both source and target
dataset. You can generate it by running following script:

neuralmonkey/lib/subword_nmt/learn_bpe.py -s 50000 < DATA > merge_file.bpe

With the data from this tutorial it would be the following command:

paste Batch1a_en.txt Batch1a_cs.txt \
| neuralmonkey/lib/subword_nmt/learn_bpe.py -s 8000 \
> exp-nm-mt/data/merge_file.bpe

You can change number of merges, this number is equivalent to the size of the vocabulary. Do not forget that as an
input is the file containing both source and target sides.

1.4.2 Part II. - The Model Configuration

In this section, we create the configuration file translation.ini needed for the machine translation training. We
mention only the differences from the main post-editing tutorial.

1.4. Machine Translation Tutorial 15

https://arxiv.org/abs/1508.07909

Neural Monkey Documentation, Release 0.1

1 - Datasets

For training, we prepare two datasets. Since we are using BPE, we need to define the preprocessor. The configu-
ration of the datasets looks like this:

[train_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-mt/data/train/Batch1a_en.txt.gz"
s_target="exp-nm-mt/data/train/Batch1a_cs.txt.gz"
preprocessors=[("source", "source_bpe", <bpe_preprocess>), ("target", "target_bpe",
→˓<bpe_preprocess>)]

[val_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-mt/data/dev/Batch2a_en.txt.gz"
s_target="exp-nm-mt/data/dev/Batch2a_cs.txt.gz"
preprocessors=[("source", "source_bpe", <bpe_preprocess>), ("target", "target_bpe",
→˓<bpe_preprocess>)]

2 - Preprocessor and Postprocessor

We need to tell the Neural Monkey how it should handle preprocessing and postprocessing due to the BPE:

[bpe_preprocess]
class=processors.bpe.BPEPreprocessor
merge_file="exp-nm-mt/data/merge_file.bpe"

[bpe_postprocess]
class=processors.bpe.BPEPostprocessor

3 - Vocabularies

For both encoder and decoder we use shared vocabulary created from BPE merges:

[shared_vocabulary]
class=vocabulary.from_bpe
path="exp-nm-mt/data/merge_file.bpe"

4 - Encoder and Decoder

The encoder and decored are similar to those from the post-editing tutorial:

[encoder]
class=encoders.recurrent.SentenceEncoder
name="sentence_encoder"
rnn_size=300
max_input_len=50
embedding_size=300
dropout_keep_prob=0.8
data_id="source_bpe"
vocabulary=<shared_vocabulary>

[attention]
(continues on next page)

16 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

(continued from previous page)

class=attentions.Attention
name="att_sent_enc"
encoder=<encoder>
state_size=300
dropout_keep_prob=0.8

[decoder]
class=decoders.decoder.Decoder
name="decoder"
encoders=[<encoder>]
attentions=[<attention>]
rnn_size=256
embedding_size=300
dropout_keep_prob=0.8
data_id="target_bpe"
vocabulary=<shared_vocabulary>
max_output_len=50

You can notice that both encoder and decoder uses as input data id the data preprocessed by <bpe_preprocess>.

5 - Training Sections

The following sections are described in more detail in the post-editing tutorial:

[trainer]
class=trainers.cross_entropy_trainer.CrossEntropyTrainer
decoders=[<decoder>]
l2_weight=1.0e-8

[runner]
class=runners.runner.GreedyRunner
decoder=<decoder>
output_series="series_named_greedy"
postprocess=<bpe_postprocess>

[bleu]
class=evaluators.bleu.BLEUEvaluator
name="BLEU-4"

[tf_manager]
class=tf_manager.TensorFlowManager
num_threads=4
num_sessions=1
minimize_metric=False
save_n_best=3

As for the main configuration section do not forget to add BPE postprocessing:

[main]
name="machine translation"
output="exp-nm-mt/out-example-translation"
runners=[<runner>]
tf_manager=<tf_manager>
trainer=<trainer>
train_dataset=<train_data>

(continues on next page)

1.4. Machine Translation Tutorial 17

Neural Monkey Documentation, Release 0.1

(continued from previous page)

val_dataset=<val_data>
evaluation=[("series_named_greedy", "target", <bleu>), ("series_named_greedy", "target
→˓", evaluators.ter.TER)]
batch_size=80
runners_batch_size=256
epochs=10
validation_period=5000
logging_period=80

1.4.3 Part III. - Running and Evaluation of the Experiment

1 - Training

The training can be run as simply as:

bin/neuralmonkey-train exp-nm-mt/translation.ini

2 - Resuming Training

If training stopped and you want to resume it, you can load pre-trained parameters by specifying the
initial_variables of the model in the [main] section:

[main]
initial_variables=/path/to/variables.data

Note there is actually no file called variables.data, but three files with this common prefix. The
initial_variables config value should correspond to this prefix.

3 - Evaluation

As for the evaluation, you need to create translation_run.ini:

[main]
test_datasets=[<eval_data>]
; We saved 3 models (save_n_best=3), so there are
; multiple models we could to translate with.
; We can go with the best model, or select one manually:
;variables=["exp-nm-mt/out-example-translation/variables.data.0"]

[bpe_preprocess]
class=processors.bpe.BPEPreprocessor
merge_file="exp-nm-mt/data/merge_file.bpe"

[eval_data]
class=dataset.load_dataset_from_files
s_source="exp-nm-mt/data/test/Batch3a_en.txt.gz"
s_series_named_greedy_out="exp-nm-mt/out-example-translation/evaluation.txt.out"
preprocessors=[("source", "source_bpe", <bpe_preprocess>)]

and run:

18 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

bin/neuralmonkey-run exp-nm-mt/translation.ini exp-nm-mt/translation_run.ini

You are ready to experiment with your own models.

1.5 Configuration

Experiments with NeuralMonkey are configured using configuration files which specifies the architecture of the model,
meta-parameters of the learning, the data, the way the data are processed and the way the model is run.

1.5.1 Syntax

The configuration files are based on the syntax of INI files, see e.g., the corresponding Wikipedia page..

Neural Monkey INI files contain key-value pairs, delimited by an equal sign (=) with no spaces around. The key-value
pairs are grouped into sections (Neural Monkey requires all pairs to belong to a section.)

Every section starts with its header which consists of the section name in square brackets. Everything below the header
is considered a part of the section.

Comments can appear on their own (otherwise empty) line, prefixed either with a hash sign (#) or a semicolon (;) and
possibly indented.

The configuration introduces several additional constructs for the values. There are both atomic values, and compound
values.

Supported atomic values are:

• booleans: literals True and False

• integers: strings that could be interpreted as integers by Python (e.g., 1, 002)

• floats: strings that could be interpreted as floats by Python (e.g., 1.0, .123, 2., 2.34e-12)

• strings: string literals in quotes (e.g., "walrus", "5")

• section references: string literals in angle brackets (e.g., <encoder>), sections are later interpreted as Python
objects

• Python names: strings without quotes which are neither booleans, integers and floats, nor section references
(e.g., neuralmonkey.encoders.SentenceEncoder)

On top of that, there are two compound types syntax from Python:

• lists: comma-separated in squared brackets (e.g., [1, 2, 3])

• tuples: comma-separated in round brackets (e.g., ("target", <ter>))

1.5.2 Variables

The configuration file can contain a [vars] section, defining variables which can be used in the rest of the config
file. Their values can have any of the types listed above. To reference a variable, use its name preceded by a dollar
sign (e.g. $variable). Variable values can also be included inside strings using the str.format() notation. For
example:

1.5. Configuration 19

https://en.wikipedia.org/wiki/INI_file

Neural Monkey Documentation, Release 0.1

[vars]
parent_dir="experiments"
drop_keep_p=0.5
output_dir="{parent_dir}/test_drop{drop_keep_p:.2f}"
prefix="my"

[main]
output=$output_dir

...

[encoder]
name="{prefix}_encoder"
dropout_keep_prob=$drop_keep_p
...

1.5.3 Interpretation

Each configuration file contains a [main] section which is interpreted as a dictionary having keys specified in the
section and values which are results of interpretation of the right hand sides.

Both the atomic and compound types taken from Python (i.e., everything except the section references) are interpreted
as their Python counterparts. (So if you write 42, Neural Monkey actually sees 42.)

Section references are interpreted as references to objects constructed when interpreting the referenced section. (So if
you write <session_manager> in a right-hand side and a section [session_manager] later in the file, Neural
Monkey will construct a Python object based on the key-value pairs in the section [session_manager].)

Every section except the [main] and [vars] sections needs to contain the key class with a value of Python name
which is a callable (e.g., a class constructor or a function). The other keys are used as named arguments of the callable.

1.5.4 Session Manager

This and following sections describes TensorFlow Manager from the users’ perspective: what can be configured in
Neural Monkey with respect to TensorFlow. The configuration of the TensorFlow manager is specified within the INI
file in section with class neuralmonkey.tf_manager.TensorFlowManager:

[session_manager]
class=tf_manager.TensorFlowManager
...

The session_manager configuration object is then referenced from the main section of the configuration:

[main]
tf_manager=<session_manager>
...

1.5.5 Training on GPU

You can easily switch between CPU and GPU version by running your experiments in virtual environment containing
either CPU or GPU version of TensorFlow without any changes to config files.

Similarly, standard techniques like setting the environment variable CUDA_VISIBLE_DEVICES can be used to con-
trol which GPUs are accessible for Neural Monkey.

20 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

By default, Neural Monkey prefers to allocate GPU memory stepwise only as needed. This can create problems with
memory fragmentation. If you know that you can allocate the whole memory at once add the following parameter the
session_manager section:

gpu_allow_growth=False

You can also restrict TensorFlow to use only a fixed proportion of GPU memory:

per_process_gpu_memory_fraction=0.65

This parameter tells TensorFlow to use only 65% of GPU memory.

1.5.6 Training on CPUs

TensorFlow Manager settings also affect training on CPUs.

The line:

num_threads=4

indicates that 4 CPUs should be used for TensorFlow computations.

1.6 API Documentation

1.6.1 neuralmonkey package

The neuralmonkey package is the root package of this project.

Sub-modules

neuralmonkey

neuralmonkey package

Subpackages

neuralmonkey.attention package

Submodules

neuralmonkey.attention.base_attention module

Decoding functions using multiple attentions for RNN decoders.

See http://arxiv.org/abs/1606.07481

The attention mechanisms used in Neural Monkey are inherited from the BaseAttention class defined in this
module.

The attention function can be viewed as a soft lookup over an associative memory. The query vector is used to
compute a similarity score of the keys of the associative memory and the resulting scores are used as weights in a

1.6. API Documentation 21

http://arxiv.org/abs/1606.07481

Neural Monkey Documentation, Release 0.1

weighted sum of the values associated with the keys. We call the (unnormalized) similarity scores energies, we call
attention distribution the energies after (softmax) normalization, and we call the resulting weighted sum of states a
context vector.

Note that it is possible (and true in most cases) that the attention keys are equal to the values. In case of self-attention,
even queries are from the same set of vectors.

To abstract over different flavors of attention mechanism, we conceptualize the procedure as follows: Each attention
object has the attention function which operates on the query tensor. The attention function receives the query
tensor (the decoder state) and optionally the previous state of the decoder, and computes the context vector. The
function also receives a loop state, which is used to store data in an autoregressive loop that generates a sequence.

The attention uses the loop state to store to store attention distributions and context vectors in time. This structure is
called AttentionLoopState. To be able to initialize the loop state, each attention object that uses this feature
defines the initial_loop_state function with empty tensors.

Since there can be many modes in which the decoder that uses the attention operates, the attention objects have the
finalize_loop method, which takes the last attention loop state and the name of the mode (a string) and processes
this data to be available in the histories dictionary. The single and most used example of two modes are the train
and runtime modes of the autoregressive decoder.

class neuralmonkey.attention.base_attention.BaseAttention(name: str,
save_checkpoint: str =
None, load_checkpoint:
str = None, initial-
izers: List[Tuple[str,
Callable]] = None) →
None

Bases: neuralmonkey.model.model_part.ModelPart

The abstract class for the attenion mechanism flavors.

__init__(name: str, save_checkpoint: str = None, load_checkpoint: str = None, initializers:
List[Tuple[str, Callable]] = None)→ None

Create a new BaseAttention object.

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: tensor-
flow.python.framework.ops.Tensor, loop_state: Any) → Tu-
ple[tensorflow.python.framework.ops.Tensor, Any]

Get context vector for a given query.

context_vector_size
Return the static size of the context vector.

Returns An integer specifying the context vector dimension.

finalize_loop(key: str, last_loop_state: Any)→ None
Store the attention histories from loop state under a given key.

Parameters

• key – The key to the histories dictionary to store the data in.

• last_loop_state – The loop state object from the last state of the decoding loop.

histories
Return the attention histories dictionary.

Use this property after it has been populated.

Returns The attention histories dictionary.

22 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

initial_loop_state()→ Any
Get initial loop state for the attention object.

Returns The newly created initial loop state object.

visualize_attention(key: str, max_outputs: int = 16)→ None
Include the attention histories under a given key into a summary.

Parameters

• key – The key to the attention histories dictionary.

• max_outputs – Maximum number of images to save.

neuralmonkey.attention.base_attention.empty_attention_loop_state(batch_size:
Union[int,
tensor-
flow.python.framework.ops.Tensor],
length:
Union[int,
tensor-
flow.python.framework.ops.Tensor],
dimension:
Union[int,
tensor-
flow.python.framework.ops.Tensor])
→ neural-
monkey.attention.namedtuples.AttentionLoopState

Create an empty attention loop state.

The attention loop state is a technical object for storing the attention distributions and the context vectors in
time. It is used with the tf.while_loop dynamic implementation of decoders.

Parameters

• batch_size – The size of the batch.

• length – The number of encoder states (keys).

• dimension – The dimension of the context vector

Returns This function returns an empty attention loop state which means there are two empty Ten-
sors one for attention distributions in time, and one for the attention context vectors in time.

neuralmonkey.attention.base_attention.get_attention_mask(encoder:
Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful])
→
Union[tensorflow.python.framework.ops.Tensor,
NoneType]

Return the temporal or spatial mask of an encoder.

Parameters encoder – The encoder to get the mask from.

Returns Either a 2D or a 3D tensor, depending on whether the encoder is temporal (e.g. recurrent
encoder) or spatial (e.g. a CNN encoder).

1.6. API Documentation 23

Neural Monkey Documentation, Release 0.1

neuralmonkey.attention.base_attention.get_attention_states(encoder:
Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful])
→ tensor-
flow.python.framework.ops.Tensor

Return the temporal or spatial states of an encoder.

Parameters encoder – The encoder with the states to attend.

Returns Either a 3D or a 4D tensor, depending on whether the encoder is temporal (e.g. recurrent
encoder) or spatial (e.g. a CNN encoder). The first two dimensions are (batch, time).

neuralmonkey.attention.combination module

Attention combination strategies.

This modules implements attention combination strategies for multi-encoder scenario when we may want to combine
the hidden states of the encoders in more complicated fashion.

Currently there are two attention combination strategies flat and hierarchical (see paper Attention Combination Strate-
gies for Multi-Source Sequence-to-Sequence Learning).

The combination strategies may use the sentinel mechanism which allows the decoder not to attend to the, and extract
information on its own hidden state (see paper Knowing when to Look: Adaptive Attention via a Visual Sentinel for
Image Captioning).

class neuralmonkey.attention.combination.FlatMultiAttention(name: str, encoders:
List[Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful]],
atten-
tion_state_size: int,
share_attn_projections:
bool = False,
use_sentinels:
bool = False,
save_checkpoint:
str = None,
load_checkpoint:
str = None, initializ-
ers: List[Tuple[str,
Callable]] = None)
→ None

Bases: neuralmonkey.attention.combination.MultiAttention

Flat attention combination strategy.

Using this attention combination strategy, hidden states of the encoders are first projected to the same space
(different projection for different encoders) and then we compute a joint distribution over all the hidden states.
The context vector is then a weighted sum of another / then projection of the encoders hidden states. The sentinel
vector can be added as an additional hidden state.

See equations 8 to 10 in the Attention Combination Strategies paper.

__init__(name: str, encoders: List[Union[neuralmonkey.model.stateful.TemporalStateful, neural-
monkey.model.stateful.SpatialStateful]], attention_state_size: int, share_attn_projections:
bool = False, use_sentinels: bool = False, save_checkpoint: str = None, load_checkpoint:
str = None, initializers: List[Tuple[str, Callable]] = None)→ None

24 Chapter 1. Getting Started

https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf

Neural Monkey Documentation, Release 0.1

Create a new BaseAttention object.

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: neural-
monkey.attention.namedtuples.AttentionLoopState) → Tu-
ple[tensorflow.python.framework.ops.Tensor, neuralmonkey.attention.namedtuples.AttentionLoopState]

Get context vector for given decoder state.

context_vector_size
Return the static size of the context vector.

Returns An integer specifying the context vector dimension.

finalize_loop(key: str, last_loop_state: neuralmonkey.attention.namedtuples.AttentionLoopState)
→ None

Store the attention histories from loop state under a given key.

Parameters

• key – The key to the histories dictionary to store the data in.

• last_loop_state – The loop state object from the last state of the decoding loop.

get_encoder_projections(scope)

initial_loop_state()→ neuralmonkey.attention.namedtuples.AttentionLoopState
Get initial loop state for the attention object.

Returns The newly created initial loop state object.

class neuralmonkey.attention.combination.HierarchicalMultiAttention(name:
str, at-
tentions:
List[neuralmonkey.attention.base_attention.BaseAttention],
atten-
tion_state_size:
int,
use_sentinels:
bool,
share_attn_projections:
bool,
save_checkpoint:
str =
None,
load_checkpoint:
str =
None,
initial-
izers:
List[Tuple[str,
Callable]]
= None)
→ None

Bases: neuralmonkey.attention.combination.MultiAttention

Hierarchical attention combination.

Hierarchical attention combination strategy first computes the context vector for each encoder separately using
whatever attention type the encoders have. After that it computes a second attention over the resulting context
vectors and optionally the sentinel vector.

1.6. API Documentation 25

Neural Monkey Documentation, Release 0.1

See equations 6 and 7 in the Attention Combination Strategies paper.

__init__(name: str, attentions: List[neuralmonkey.attention.base_attention.BaseAttention], atten-
tion_state_size: int, use_sentinels: bool, share_attn_projections: bool, save_checkpoint: str
= None, load_checkpoint: str = None, initializers: List[Tuple[str, Callable]] = None) →
None

Create a new BaseAttention object.

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: neural-
monkey.attention.namedtuples.HierarchicalLoopState) → Tu-
ple[tensorflow.python.framework.ops.Tensor, neuralmonkey.attention.namedtuples.HierarchicalLoopState]

Get context vector for given decoder state.

context_vector_size
Return the static size of the context vector.

Returns An integer specifying the context vector dimension.

finalize_loop(key: str, last_loop_state: Any)→ None
Store the attention histories from loop state under a given key.

Parameters

• key – The key to the histories dictionary to store the data in.

• last_loop_state – The loop state object from the last state of the decoding loop.

initial_loop_state()→ neuralmonkey.attention.namedtuples.HierarchicalLoopState
Get initial loop state for the attention object.

Returns The newly created initial loop state object.

class neuralmonkey.attention.combination.MultiAttention(name: str, atten-
tion_state_size: int,
share_attn_projections:
bool = False,
use_sentinels: bool =
False, save_checkpoint: str
= None, load_checkpoint:
str = None, initializers:
List[Tuple[str, Callable]]
= None)→ None

Bases: neuralmonkey.attention.base_attention.BaseAttention

Base class for attention combination.

__init__(name: str, attention_state_size: int, share_attn_projections: bool = False, use_sentinels:
bool = False, save_checkpoint: str = None, load_checkpoint: str = None, initializers:
List[Tuple[str, Callable]] = None)→ None

Create a new BaseAttention object.

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: tensor-
flow.python.framework.ops.Tensor, loop_state: Any) → Tu-
ple[tensorflow.python.framework.ops.Tensor, Any]

Get context vector for given decoder state.

attn_size

26 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.attention.coverage module

Coverage attention introduced in Tu et al. (2016).

See arxiv.org/abs/1601.04811

The CoverageAttention class inherites from the basic feed-forward attention introduced by Bahdanau et al. (2015)

class neuralmonkey.attention.coverage.CoverageAttention(name: str, encoder:
Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful],
dropout_keep_prob: float
= 1.0, state_size: int =
None, max_fertility: int
= 5, save_checkpoint: str
= None, load_checkpoint:
str = None, initializers:
List[Tuple[str, Callable]]
= None)→ None

Bases: neuralmonkey.attention.feed_forward.Attention

__init__(name: str, encoder: Union[neuralmonkey.model.stateful.TemporalStateful, neural-
monkey.model.stateful.SpatialStateful], dropout_keep_prob: float = 1.0, state_size: int =
None, max_fertility: int = 5, save_checkpoint: str = None, load_checkpoint: str = None,
initializers: List[Tuple[str, Callable]] = None)→ None

Create a new BaseAttention object.

get_energies(y: tensorflow.python.framework.ops.Tensor, weights_in_time: tensor-
flow.python.framework.ops.Tensor)

neuralmonkey.attention.feed_forward module

The feed-forward attention mechanism.

This is the attention mechanism used in Bahdanau et al. (2015)

See arxiv.org/abs/1409.0473

class neuralmonkey.attention.feed_forward.Attention(name: str, encoder:
Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful],
dropout_keep_prob: float =
1.0, state_size: int = None,
save_checkpoint: str = None,
load_checkpoint: str = None,
initializers: List[Tuple[str,
Callable]] = None)→ None

Bases: neuralmonkey.attention.base_attention.BaseAttention

__init__(name: str, encoder: Union[neuralmonkey.model.stateful.TemporalStateful, neural-
monkey.model.stateful.SpatialStateful], dropout_keep_prob: float = 1.0, state_size: int =
None, save_checkpoint: str = None, load_checkpoint: str = None, initializers: List[Tuple[str,
Callable]] = None)→ None

Create a new BaseAttention object.

1.6. API Documentation 27

Neural Monkey Documentation, Release 0.1

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: neural-
monkey.attention.namedtuples.AttentionLoopState) → Tu-
ple[tensorflow.python.framework.ops.Tensor, neuralmonkey.attention.namedtuples.AttentionLoopState]

Get context vector for a given query.

attention_mask

attention_states

bias_term

context_vector_size
Return the static size of the context vector.

Returns An integer specifying the context vector dimension.

finalize_loop(key: str, last_loop_state: neuralmonkey.attention.namedtuples.AttentionLoopState)
→ None

Store the attention histories from loop state under a given key.

Parameters

• key – The key to the histories dictionary to store the data in.

• last_loop_state – The loop state object from the last state of the decoding loop.

get_energies(y, _)

hidden_features

initial_loop_state()→ neuralmonkey.attention.namedtuples.AttentionLoopState
Get initial loop state for the attention object.

Returns The newly created initial loop state object.

key_projection_matrix

projection_bias_vector

query_projection_matrix

similarity_bias_vector

state_size

neuralmonkey.attention.namedtuples module

class neuralmonkey.attention.namedtuples.AttentionLoopState
Bases: neuralmonkey.attention.namedtuples.AttentionLoopState

Basic loop state of an attention mechanism.

contexts
A tensor of shape (query_time, batch, context_dim) which stores the context vectors for
every decoder time step.

weights
A tensor of shape (query_time, batch, keys_len) which stores the attention distribution over
the keys given the query in each decoder time step.

28 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

class neuralmonkey.attention.namedtuples.HierarchicalLoopState
Bases: neuralmonkey.attention.namedtuples.HierarchicalLoopState

Loop state of the hierarchical attention mechanism.

The input to the hierarchical attetnion is the output of a set of underlying (child) attentions. To record the inner
states of the underlying attentions, we use the HierarchicalLoopState, which holds information about
both the underlying attentions, and the top-level attention itself.

child_loop_states
A list of attention loop states of the underlying attention mechanisms.

loop_state
The attention loop state of the top-level attention.

class neuralmonkey.attention.namedtuples.MultiHeadLoopState
Bases: neuralmonkey.attention.namedtuples.MultiHeadLoopState

Loop state of a multi-head attention.

contexts
A tensor of shape (query_time, batch, context_dim) which stores the context vectors for
every decoder time step.

head_weights
A tensor of shape (query_time, n_heads, batch, keys_len) which stores the attention dis-
tribution over the keys given the query in each decoder time step for each attention head.

neuralmonkey.attention.scaled_dot_product module

The scaled dot-product attention mechanism defined in Vaswani et al. (2017).

The attention energies are computed as dot products between the query vector and the key vector. The query vector is
scaled down by the square root of its dimensionality. This attention function has no trainable parameters.

See arxiv.org/abs/1706.03762

1.6. API Documentation 29

Neural Monkey Documentation, Release 0.1

class neuralmonkey.attention.scaled_dot_product.MultiHeadAttention(name: str,
n_heads:
int,
keys_encoder:
Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful],
val-
ues_encoder:
Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful]
= None,
dropout_keep_prob:
float =
1.0,
save_checkpoint:
str =
None,
load_checkpoint:
str =
None, ini-
tializers:
List[Tuple[str,
Callable]]
= None)
→ None

Bases: neuralmonkey.attention.base_attention.BaseAttention

__init__(name: str, n_heads: int, keys_encoder: Union[neuralmonkey.model.stateful.TemporalStateful,
neuralmonkey.model.stateful.SpatialStateful], values_encoder:
Union[neuralmonkey.model.stateful.TemporalStateful, neural-
monkey.model.stateful.SpatialStateful] = None, dropout_keep_prob: float = 1.0,
save_checkpoint: str = None, load_checkpoint: str = None, initializers: List[Tuple[str,
Callable]] = None)→ None

Create a new BaseAttention object.

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: neural-
monkey.attention.namedtuples.MultiHeadLoopState) → Tu-
ple[tensorflow.python.framework.ops.Tensor, neuralmonkey.attention.namedtuples.MultiHeadLoopState]

Run a multi-head attention getting context vector for a given query.

This method is an API-wrapper for the global function ‘attention’ defined in this module. Transforms a
query of shape(batch, query_size) to shape(batch, 1, query_size) and applies the attention function. Output
context has shape(batch, 1, value_size) and weights have shape(batch, n_heads, 1, time(k)). The output is
then processed to produce output vector of contexts and the following attention loop state.

Parameters

• query – Input query for the current decoding step of shape(batch, query_size).

• decoder_prev_state – Previous state of the decoder.

• decoder_input – Input to the RNN cell of the decoder.

• loop_state – Attention loop state.

30 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

Returns Vector of contexts and the following attention loop state.

context_vector_size
Return the static size of the context vector.

Returns An integer specifying the context vector dimension.

finalize_loop(key: str, last_loop_state: neuralmonkey.attention.namedtuples.MultiHeadLoopState)
→ None

Store the attention histories from loop state under a given key.

Parameters

• key – The key to the histories dictionary to store the data in.

• last_loop_state – The loop state object from the last state of the decoding loop.

initial_loop_state()→ neuralmonkey.attention.namedtuples.MultiHeadLoopState
Get initial loop state for the attention object.

Returns The newly created initial loop state object.

visualize_attention(key: str, max_outputs: int = 16)→ None
Include the attention histories under a given key into a summary.

Parameters

• key – The key to the attention histories dictionary.

• max_outputs – Maximum number of images to save.

1.6. API Documentation 31

Neural Monkey Documentation, Release 0.1

class neuralmonkey.attention.scaled_dot_product.ScaledDotProdAttention(name:
str,
keys_encoder:
Union[neuralmonkey.model.stateful.TemporalStateful,
neu-
ral-
monkey.model.stateful.SpatialStateful],
val-
ues_encoder:
Union[neuralmonkey.model.stateful.TemporalStateful,
neu-
ral-
monkey.model.stateful.SpatialStateful]
=
None,
dropout_keep_prob:
float
=
1.0,
save_checkpoint:
str
=
None,
load_checkpoint:
str
=
None,
ini-
tial-
iz-
ers:
List[Tuple[str,
Callable]]
=
None)
→
None

Bases: neuralmonkey.attention.scaled_dot_product.MultiHeadAttention

__init__(name: str, keys_encoder: Union[neuralmonkey.model.stateful.TemporalStateful,
neuralmonkey.model.stateful.SpatialStateful], values_encoder:
Union[neuralmonkey.model.stateful.TemporalStateful, neural-
monkey.model.stateful.SpatialStateful] = None, dropout_keep_prob: float = 1.0,
save_checkpoint: str = None, load_checkpoint: str = None, initializers: List[Tuple[str,
Callable]] = None)→ None

Create a new BaseAttention object.

32 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.attention.scaled_dot_product.attention(queries: tensor-
flow.python.framework.ops.Tensor,
keys: tensor-
flow.python.framework.ops.Tensor,
values: tensor-
flow.python.framework.ops.Tensor,
keys_mask: tensor-
flow.python.framework.ops.Tensor,
num_heads: int,
dropout_callback:
Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
masked: bool = False, use_bias:
bool = False) → tensor-
flow.python.framework.ops.Tensor

Run multi-head scaled dot-product attention.

See arxiv.org/abs/1706.03762

When performing multi-head attention, the queries, keys and values vectors are first split to sets of smaller
vectors, one for each attention head. Next, they are transformed using a linear layer and a separate attention
(from a corresponding head) is applied on each set of the transformed triple of query, key and value. The
resulting contexts from each head are then concatenated and a linear layer is applied on this concatenated output.
The following can be summed by following equations:

MultiHead(Q, K, V) = Concat(head_1, ..., head_h) * W_o
head_i = Attention(Q * W_Q_i, K * W_K_i, V * W_V_i)

The scaled dot-product attention is a simple dot-product between the query and a transposed key vector. The
result is then scaled using square root of the vector dimensions and a softmax layer is applied. Finally, the output
of the softmax layer is multiplied by the value vector. See the following equation:

Attention(Q, K, V) = softmax(Q * K^T / (d_k)) * V

Parameters

• queries – Input queries of shape (batch, time(q), k_channels).

• keys – Input keys of shape (batch, time(k), k_channels).

• values – Input values of shape (batch, time(k), v_channels).

• keys_mask – A float Tensor for masking sequences in keys.

• num_heads – Number of attention heads.

• dropout_callback – Callable function implementing dropout.

• masked – Boolean indicating whether we want to mask future energies.

Returns Contexts of shape (batch, time(q), v_channels) and weights of shape
(batch, time(q), time(k)).

1.6. API Documentation 33

Neural Monkey Documentation, Release 0.1

neuralmonkey.attention.scaled_dot_product.empty_multi_head_loop_state(batch_size:
Union[int,
ten-
sor-
flow.python.framework.ops.Tensor],
num_heads:
Union[int,
ten-
sor-
flow.python.framework.ops.Tensor],
length:
Union[int,
ten-
sor-
flow.python.framework.ops.Tensor],
di-
men-
sion:
Union[int,
ten-
sor-
flow.python.framework.ops.Tensor])
→
neu-
ral-
monkey.attention.namedtuples.MultiHeadLoopState

neuralmonkey.attention.scaled_dot_product.mask_energies(energies_4d: tensor-
flow.python.framework.ops.Tensor,
mask: tensor-
flow.python.framework.ops.Tensor,
mask_value=-
1000000000.0) → tensor-
flow.python.framework.ops.Tensor

Apply mask to the attention energies before passing to softmax.

Parameters

• energies_4d – Energies of shape (batch, n_heads, time(q), time(k)).

• mask – Float Tensor of zeros and ones of shape (batch, time(k)), specifies valid
positions in the energies tensor.

• mask_value – Value used to mask energies. Default taken value from tensor2tensor.

Returns Energies (logits) of valid positions. Same shape as energies_4d.

Note: We do not use mask_value=-np.inf to avoid potential underflow.

neuralmonkey.attention.scaled_dot_product.mask_future(energies: tensor-
flow.python.framework.ops.Tensor,
mask_value=-
1000000000.0) → tensor-
flow.python.framework.ops.Tensor

Mask energies of keys using lower triangular matrix.

34 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

Mask simulates autoregressive decoding, such that it prevents the attention to look at what has not yet been
decoded. Mask is not necessary during training when true output values are used instead of the decoded ones.

Parameters

• energies – A tensor to mask.

• mask_value – Value used to mask energies.

Returns Masked energies tensor.

neuralmonkey.attention.scaled_dot_product.split_for_heads(x: tensor-
flow.python.framework.ops.Tensor,
n_heads: int,
head_dim: int)
→ tensor-
flow.python.framework.ops.Tensor

Split a tensor for multi-head attention.

Split last dimension of 3D vector of shape (batch, time, dim) and return a 4D vector with shape
(batch, n_heads, time, dim/n_heads).

Parameters

• x – input Tensor of shape (batch, time, dim).

• n_heads – Number of attention heads.

• head_dim – Dimension of the attention heads.

Returns A 4D Tensor of shape (batch, n_heads, time, head_dim/n_heads)

neuralmonkey.attention.stateful_context module

class neuralmonkey.attention.stateful_context.StatefulContext(name: str,
encoder: neural-
monkey.model.stateful.Stateful,
save_checkpoint:
str = None,
load_checkpoint:
str = None,
initializers:
List[Tuple[str,
Callable]] =
None)→ None

Bases: neuralmonkey.attention.base_attention.BaseAttention

Provides a Stateful encoder’s output as context to a decoder.

This is not really an attention mechanism, but rather a hack which (mis)uses the attention interface to provide a
“static” context vector to the decoder cell. In other words, the context vector is the same for all positions in the
sequence and doesn’t depend on the query vector.

To use this, simply pass an instance of this class to the decoder using the attentions parameter.

__init__(name: str, encoder: neuralmonkey.model.stateful.Stateful, save_checkpoint: str = None,
load_checkpoint: str = None, initializers: List[Tuple[str, Callable]] = None)→ None

Create a new BaseAttention object.

1.6. API Documentation 35

Neural Monkey Documentation, Release 0.1

attention(query: tensorflow.python.framework.ops.Tensor, decoder_prev_state:
tensorflow.python.framework.ops.Tensor, decoder_input: ten-
sorflow.python.framework.ops.Tensor, loop_state: neural-
monkey.attention.namedtuples.AttentionLoopState) → Tu-
ple[tensorflow.python.framework.ops.Tensor, neuralmonkey.attention.namedtuples.AttentionLoopState]

Get context vector for a given query.

attention_mask

attention_states

context_vector_size
Return the static size of the context vector.

Returns An integer specifying the context vector dimension.

finalize_loop(key: str, last_loop_state: neuralmonkey.attention.namedtuples.AttentionLoopState)
→ None

Store the attention histories from loop state under a given key.

Parameters

• key – The key to the histories dictionary to store the data in.

• last_loop_state – The loop state object from the last state of the decoding loop.

initial_loop_state()→ neuralmonkey.attention.namedtuples.AttentionLoopState
Get initial loop state for the attention object.

Returns The newly created initial loop state object.

state_size

visualize_attention(key: str, max_outputs: int = 16)→ None
Include the attention histories under a given key into a summary.

Parameters

• key – The key to the attention histories dictionary.

• max_outputs – Maximum number of images to save.

Module contents

neuralmonkey.dataset package

Submodules

neuralmonkey.dataset.dataset module

Implementation of the dataset class.

class neuralmonkey.dataset.dataset.Dataset(name: str, series: Dict[str, List], se-
ries_outputs: Dict[str, str], preprocessors:
List[Tuple[str, str, Callable]] = None) →
None

Bases: collections.abc.Sized

Base Dataset class.

This class serves as collection for data series for particular encoders and decoders in the model. If it is not
provided a parent dataset, it also manages the vocabularies inferred from the data.

36 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

A data series is either a list of strings or a numpy array.

__init__(name: str, series: Dict[str, List], series_outputs: Dict[str, str], preprocessors: List[Tuple[str,
str, Callable]] = None)→ None

Create a dataset from the provided series of data.

Parameters

• name – The name for the dataset

• series – Dictionary from the series name to the actual data.

• series_outputs – Output files for target series.

• preprocessors – The definition of the preprocessors.

add_series(name: str, series: List)→ None

batch_dataset(batch_size: int)→ Iterable[Dataset]
Split the dataset into a list of batched datasets.

Parameters batch_size – The size of a batch.

Returns Generator yielding batched datasets.

batch_serie(serie_name: str, batch_size: int)→ Iterable[Iterable]
Split a data serie into batches.

Parameters

• serie_name – The name of the series

• batch_size – The size of a batch

Returns Generator yielding batches of the data from the serie.

get_series(name: str)→ Iterable
Get the data series with a given name.

Parameters name – The name of the series to fetch.

Returns The data series.

Raises KeyError if the series does not exists.

has_series(name: str)→ bool
Check if the dataset contains a series of a given name.

Parameters name – Series name

Returns True if the dataset contains the series, False otherwise.

maybe_get_series(name: str)→ Union[Iterable, NoneType]
Get the data series with a given name.

Parameters name – The name of the series to fetch.

Returns The data series or None if it does not exist.

series_ids

shuffle()→ None
Shuffle the dataset randomly.

subset(start: int, length: int)→ neuralmonkey.dataset.dataset.Dataset

1.6. API Documentation 37

Neural Monkey Documentation, Release 0.1

neuralmonkey.dataset.helpers module

Helper functions for building datasets.

neuralmonkey.dataset.helpers.from_files(name: str, lazy: bool = False, preprocessors:
List[Tuple[str, str, Callable]] = None, **kwargs)
→ neuralmonkey.dataset.dataset.Dataset

Load a dataset from the files specified by the provided arguments.

Paths to the data are provided in a form of dictionary.

Keyword Arguments

• name – The name of the dataset to use. If None (default), the name will be inferred from
the file names.

• lazy – Boolean flag specifying whether to use lazy loading (useful for large files). Note
that the lazy dataset cannot be shuffled. Defaults to False.

• preprocessor – A callable used for preprocessing of the input sentences.

• kwargs – Dataset keyword argument specs. These parameters should begin with ‘s_’ prefix
and may end with ‘_out’ suffix. For example, a data series ‘source’ which specify the source
sentences should be initialized with the ‘s_source’ parameter, which specifies the path and
optinally reader of the source file. If runners generate data of the ‘target’ series, the output
file should be initialized with the ‘s_target_out’ parameter. Series identifiers should not
contain underscores. Dataset-level preprocessors are defined with ‘pre_’ prefix followed
by a new series name. In case of the pre-processed series, a callable taking the dataset and
returning a new series is expected as a value.

Returns The newly created dataset.

Raises Exception when no input files are provided.

neuralmonkey.dataset.helpers.load_dataset_from_files(name: str, lazy: bool
= False, preprocessors:
List[Tuple[str, str, Callable]]
= None, **kwargs) → neural-
monkey.dataset.dataset.Dataset

Load a dataset from the files specified by the provided arguments.

Paths to the data are provided in a form of dictionary.

Keyword Arguments

• name – The name of the dataset to use. If None (default), the name will be inferred from
the file names.

• lazy – Boolean flag specifying whether to use lazy loading (useful for large files). Note
that the lazy dataset cannot be shuffled. Defaults to False.

• preprocessor – A callable used for preprocessing of the input sentences.

• kwargs – Dataset keyword argument specs. These parameters should begin with ‘s_’ prefix
and may end with ‘_out’ suffix. For example, a data series ‘source’ which specify the source
sentences should be initialized with the ‘s_source’ parameter, which specifies the path and
optinally reader of the source file. If runners generate data of the ‘target’ series, the output
file should be initialized with the ‘s_target_out’ parameter. Series identifiers should not
contain underscores. Dataset-level preprocessors are defined with ‘pre_’ prefix followed
by a new series name. In case of the pre-processed series, a callable taking the dataset and
returning a new series is expected as a value.

38 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

Returns The newly created dataset.

Raises Exception when no input files are provided.

neuralmonkey.dataset.lazy_dataset module

Lazy dataset which does not load the whole data into memory.

class neuralmonkey.dataset.lazy_dataset.LazyDataset(name: str, se-
ries_paths_and_readers:
Dict[str, Tuple[List[str],
Callable[[List[str]], Any]]],
series_outputs: Dict[str, str],
preprocessors: List[Tuple[str,
str, Callable]] = None)→ None

Bases: neuralmonkey.dataset.dataset.Dataset

Implements the lazy dataset.

The main difference between this implementation and the default one is that the contents of the file are not fully
loaded to the memory. Instead, everytime the function get_series is called, a new file handle is created and
a generator which yields lines from the file is returned.

__init__(name: str, series_paths_and_readers: Dict[str, Tuple[List[str], Callable[[List[str]], Any]]],
series_outputs: Dict[str, str], preprocessors: List[Tuple[str, str, Callable]] = None)→ None

Create a new instance of the lazy dataset.

Lazy dataset first initializes the parent Dataset object with empty series

Parameters

• name – The name of the dataset

• series_paths_and_readers – Dictionary that maps each series ID to a list of files
and a reader.

• series_outputs – A mapping of series IDs to output files.

• preprocessors – The preprocessors to apply to the data series. Each preprocessor is
defined by source series ID, resulting preprocessed series ID, and a function that is applied
on the source series.

add_lazy_series(name: str)→ None

add_series(name: str, series: List)→ None

get_series(name: str)→ Iterable
Get the data series with a given name.

This function opens a new file handle and returns a generator which yields preprocessed lines from the file.

Parameters name – The name of the series to fetch.

Returns The data series.

Raises KeyError if the series does not exist.

has_series(name: str)→ bool
Check if the dataset contains a series of a given name.

Parameters name – Series name

Returns True if the dataset contains the series, False otherwise.

1.6. API Documentation 39

Neural Monkey Documentation, Release 0.1

maybe_get_series(name: str)→ Union[Iterable, NoneType]
Get the data series with a given name or None if it does not exist.

This function opens a new file handle and returns a generator which yields preprocessed lines from the file.

Parameters name – The name of the series to fetch.

Returns The data series or None if it does not exist.

series_ids

shuffle()→ None
Do nothing, not in-memory shuffle is impossible.

TODO: this is related to the __len__ method.

subset(start: int, length: int)→ neuralmonkey.dataset.dataset.Dataset

Module contents

neuralmonkey.decoders package

Submodules

neuralmonkey.decoders.autoregressive module

Abstract class for autoregressive decoding.

Either for the recurrent decoder, or for the transformer decoder.

The autoregressive decoder uses the while loop to get the outputs. Descendants should only specify the initial state
and the while loop body.

40 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

class neuralmonkey.decoders.autoregressive.AutoregressiveDecoder(name: str,
vocabulary:
neural-
monkey.vocabulary.Vocabulary,
data_id: str,
max_output_len:
int,
dropout_keep_prob:
float = 1.0,
embed-
ding_size:
int = None,
embed-
dings_source:
neural-
monkey.model.sequence.EmbeddedSequence
= None,
tie_embeddings:
bool =
False, la-
bel_smoothing:
float = None,
supress_unk:
bool = False,
save_checkpoint:
str = None,
load_checkpoint:
str = None,
initializers:
List[Tuple[str,
Callable]]
= None) →
None

Bases: neuralmonkey.model.model_part.ModelPart

__init__(name: str, vocabulary: neuralmonkey.vocabulary.Vocabulary, data_id: str, max_output_len:
int, dropout_keep_prob: float = 1.0, embedding_size: int = None, embeddings_source: neu-
ralmonkey.model.sequence.EmbeddedSequence = None, tie_embeddings: bool = False, la-
bel_smoothing: float = None, supress_unk: bool = False, save_checkpoint: str = None,
load_checkpoint: str = None, initializers: List[Tuple[str, Callable]] = None)→ None

Initialize parameters common for all autoregressive decoders.

Parameters

• name – Name of the decoder. Should be unique accross all Neural Monkey objects.

• vocabulary – Target vocabulary.

• data_id – Target data series.

• max_output_len – Maximum length of an output sequence.

• dropout_keep_prob – Probability of keeping a value during dropout.

• embedding_size – Size of embedding vectors for target words.

• embeddings_source – Embedded sequence to take embeddings from.

1.6. API Documentation 41

Neural Monkey Documentation, Release 0.1

• tie_embeddings – Use decoder.embedding_matrix also in place of the output decod-
ing matrix.

• label_smoothing – Label smoothing parameter.

• supress_unk – If true, decoder will not produce symbols for unknown tokens.

cost

decoded

decoding_b

decoding_loop(train_mode: bool, sample: bool = False, temperature: float
= 1) → Tuple[tensorflow.python.framework.ops.Tensor, tensor-
flow.python.framework.ops.Tensor, tensorflow.python.framework.ops.Tensor,
tensorflow.python.framework.ops.Tensor]

Run the decoding while loop.

Calls get_initial_loop_state and constructs tf.while_loop with the continuation criterion returned from
loop_continue_criterion, and body function returned from get_body.

After finishing the tf.while_loop, it calls finalize_loop to further postprocess the final decoder loop state
(usually by stacking Tensors containing decoding histories).

Parameters

• train_mode – Boolean flag, telling whether this is a training run.

• sample – Boolean flag, telling whether we should sample the output symbols from the
output distribution instead of using argmax or gold data.

• temperature – float value specifying the softmax temperature

decoding_w

embedding_matrix
Variables and operations for embedding of input words.

If we are reusing word embeddings, this function takes the embedding matrix from the first encoder

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

Populate the feed dictionary for the decoder object.

Parameters

• dataset – The dataset to use for the decoder.

• train – Boolean flag, telling whether this is a training run.

finalize_loop(final_loop_state: neuralmonkey.decoders.autoregressive.LoopState, train_mode:
bool)→ None

Execute post-while loop operations.

Parameters

• final_loop_state – Decoder loop state at the end of the decoding loop.

• train_mode – Boolean flag, telling whether this is a training run.

get_body(train_mode: bool, sample: bool = False, temperature: float = 1)→ Callable
Return the while loop body function.

get_initial_loop_state()→ neuralmonkey.decoders.autoregressive.LoopState

42 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

get_logits(state: tensorflow.python.framework.ops.Tensor) → tensor-
flow.python.framework.ops.Tensor

Project the decoder’s output layer to logits over the vocabulary.

loop_continue_criterion(*args)→ tensorflow.python.framework.ops.Tensor
Decide whether to break out of the while loop.

Parameters loop_state – LoopState instance (see the docs for this module). Represents
current decoder loop state.

output_dimension

runtime_logits

runtime_logprobs

runtime_loop_result

runtime_loss

runtime_mask

runtime_output_states

runtime_xents

train_logits

train_logprobs

train_loop_result

train_loss

train_output_states

train_xents

class neuralmonkey.decoders.autoregressive.DecoderConstants
Bases: neuralmonkey.decoders.autoregressive.DecoderConstants

The constants used by an autoregressive decoder.

train_inputs
During training, this is populated by the target token ids.

class neuralmonkey.decoders.autoregressive.DecoderFeedables
Bases: neuralmonkey.decoders.autoregressive.DecoderFeedables

The input of a single step of an autoregressive decoder.

step
A scalar int tensor, stores the number of the current time step.

finished
A boolean tensor of shape (batch), which says whether the decoding of a sentence in the batch is
finished or not. (E.g. whether the end token has already been generated.)

input_symbol
A boolean batch-sized tensor with the inputs to the decoder. During inference, this contains the previ-
ously generated tokens. During training, this contains the reference tokens.

prev_logits
A tensor of shape (batch, vocabulary). Contains the logits from the previous decoding step.

1.6. API Documentation 43

Neural Monkey Documentation, Release 0.1

class neuralmonkey.decoders.autoregressive.DecoderHistories
Bases: neuralmonkey.decoders.autoregressive.DecoderHistories

The values collected during the run of an autoregressive decoder.

logits
A tensor of shape (time, batch, vocabulary) which contains the unnormalized output scores of
words in a vocabulary.

decoder_outputs
A tensor of shape (time, batch, state_size). The states of the decoder before the final output
(logit) projection.

outputs
An int tensor of shape (time, batch). Stores the generated symbols. (Either an argmax-ed value from
the logits, or a target token, during training.)

mask
A float tensor of zeros and ones of shape (time, batch). Keeps track of valid positions in the decoded
data.

class neuralmonkey.decoders.autoregressive.LoopState
Bases: neuralmonkey.decoders.autoregressive.LoopState

The loop state object.

The LoopState is a structure that works with the tf.while_loop function the decoder loop state stores all the
information that is not invariant for the decoder run.

histories
A set of tensors that grow in time as the decoder proceeds.

constants
A set of independent tensors that do not change during the entire decoder run.

feedables
A set of tensors used as the input of a single decoder step.

neuralmonkey.decoders.beam_search_decoder module

Beam search decoder.

This module implements the beam search algorithm for autoregressive decoders.

As any autoregressive decoder, this decoder works dynamically, which means it uses the tf.while_loop function
conditioned on both maximum output length and list of finished hypotheses.

The beam search decoder uses four data strcutures during the decoding process. SearchState, SearchResults,
BeamSearchLoopState, and BeamSearchOutput. The purpose of these is described in their own docstring.

These structures help the decoder to keep track of the decoding, enabling it to be called e.g. during ensembling, when
the content of the structures can be changed and then fed back to the model.

The implementation mimics the API of the AutoregressiveDecoder class. There are functions that prepare and
return values that are supplied to the tf.while_loop function.

44 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

class neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder(name:
str, par-
ent_decoder:
neural-
monkey.decoders.autoregressive.AutoregressiveDecoder,
beam_size:
int,
max_steps:
int,
length_normalization:
float) →
None

Bases: neuralmonkey.model.model_part.ModelPart

In-graph beam search decoder.

The hypothesis scoring algorithm is taken from https://arxiv.org/pdf/1609.08144.pdf. Length normalization is
parameter alpha from equation 14.

__init__(name: str, parent_decoder: neuralmonkey.decoders.autoregressive.AutoregressiveDecoder,
beam_size: int, max_steps: int, length_normalization: float)→ None

Construct the beam search decoder graph.

Parameters

• name – The name for the model part.

• parent_decoder – An autoregressive decoder from which to sample.

• beam_size – The number of hypotheses in the beam.

• max_steps – The maximum number of time steps to perform.

• length_normalization – The alpha parameter from Eq. 14 in the paper.

decoder_state

decoding_loop()→ neuralmonkey.decoders.beam_search_decoder.BeamSearchOutput
Create the decoding loop.

This function mimics the behavior of the decoding_loop method of the
AutoregressiveDecoder, except the initial loop state is created outside this method because
it is accessed and fed during ensembling.

TODO: The finalize_loop method and the handling of attention loop states might be implemented
in the future.

Returns This method returns a populated BeamSearchOutput object.

expand_to_beam(val: tensorflow.python.framework.ops.Tensor, dim: int = 0) → tensor-
flow.python.framework.ops.Tensor

Copy a tensor along a new beam dimension.

Parameters

• val – The Tensor to expand.

• dim – The dimension along which to expand. Usually, the batch axis.

Returns The expanded tensor.

get_body()→ Callable[[Any], neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState]
Return a body function for tf.while_loop.

Returns A function that performs a single decoding step.

1.6. API Documentation 45

https://arxiv.org/pdf/1609.08144.pdf

Neural Monkey Documentation, Release 0.1

get_initial_loop_state()→ neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState
Construct the initial loop state for the beam search decoder.

During the construction, the body function of the underlying decoder is called once to retrieve the initial
log probabilities of the first token.

The values are initialized as follows:

• search_state

– logprob_sum - For each sentence in batch, logprob sum of the first hypothesis in the beam
is set to zero while the others are set to negative infinity.

– prev_logprobs - This is the softmax over the logits from the initial decoder step.

– lengths - All zeros.

– finshed - All false.

• search_results

– scores - A (batch, beam)-sized tensor of zeros.

– token_ids - A (1, batch, beam)-sized tensor filled with indices of decoder-specific initial
input symbols (usually start symbol IDs).

• decoder_loop_state - The loop state of the underlying autoregressive decoder, as returned
from the initial call to the body function.

Returns A populated BeamSearchLoopState structure.

loop_continue_criterion(*args)→ tensorflow.python.framework.ops.Tensor
Decide whether to break out of the while loop.

The criterion for stopping the loop is that either all hypotheses are finished or a maximum number of steps
has been reached. Here the number of steps is the number of steps of the underlying decoder minus one,
because this function is evaluated after the decoder step has been called and its step has been incremented.
This is caused by the fact that we call the decoder body function at the end of the beam body function.
(And that, in turn, is to support ensembling.)

Parameters args – A BeamSearchLoopState instance.

Returns A scalar boolean Tensor.

search_results

search_state

vocabulary

class neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState
Bases: neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState

The loop state of the beam search decoder.

A loop state object that is used for transferring data between cycles through the symbolic while loop. It groups
together the SearchState and SearchResults structures and also keeps track of the underlying decoder
loop state.

search_state
A SearchState object representing the current search state.

search_results
The growing SearchResults object which accummulates the outputs of the decoding process.

46 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

decoder_loop_state
The current loop state of the underlying autoregressive decoder.

class neuralmonkey.decoders.beam_search_decoder.BeamSearchOutput
Bases: neuralmonkey.decoders.beam_search_decoder.BeamSearchOutput

The final structure that is returned from the while loop.

last_search_step_output
A populated SearchResults object.

last_dec_loop_state
Final loop state of the underlying decoder.

last_search_state
Final loop state of the beam search decoder.

attention_loop_states
The final loop states of the attention objects.

class neuralmonkey.decoders.beam_search_decoder.SearchResults
Bases: neuralmonkey.decoders.beam_search_decoder.SearchResults

The intermediate results of the beam search decoding.

A cummulative structure that holds the actual decoded tokens and hypotheses scores (after applying a length
penalty term).

scores
A (time, batch, beam)-shaped tensor with the scores for each hypothesis. The score is computed
from the logprob_sum of a hypothesis and accounting for the hypothesis length.

token_ids
A (time, batch, beam)-shaped tensor with the vocabulary indices of the tokens in each hypothesis.

class neuralmonkey.decoders.beam_search_decoder.SearchState
Bases: neuralmonkey.decoders.beam_search_decoder.SearchState

Search state of a beam search decoder.

This structure keeps track of a current state of the beam search algorithm. The search state contains tensors
that represent hypotheses in the beam, namely their log probability, length, and distribution over the vocabulary
when decoding the last word, as well as if the hypothesis is finished or not.

logprob_sum
A (batch, beam)-shaped tensor with the sums of token log-probabilities of each hypothesis.

prev_logprobs
A (batch, beam, vocabulary)-sized tensor. Stores the log-distribution over the vocabulary from
the previous decoding step for each hypothesis.

lengths
A (batch, beam)-shaped tensor with the lengths of the hypotheses.

finished
A boolean tensor with shape (batch, beam). Marks finished and unfinished hypotheses.

1.6. API Documentation 47

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.classifier module

class neuralmonkey.decoders.classifier.Classifier(name: str, encoders:
List[neuralmonkey.model.stateful.Stateful],
vocabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str, layers:
List[int], activation_fn:
Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor]
= <function relu>,
dropout_keep_prob: float = 0.5,
save_checkpoint: Union[str, None-
Type] = None, load_checkpoint:
Union[str, NoneType] = None, ini-
tializers: List[Tuple[str, Callable]]
= None)→ None

Bases: neuralmonkey.model.model_part.ModelPart

A simple MLP classifier over encoders.

The API pretends it is an RNN decoder which always generates a sequence of length exactly one.

__init__(name: str, encoders: List[neuralmonkey.model.stateful.Stateful], vocabu-
lary: neuralmonkey.vocabulary.Vocabulary, data_id: str, layers: List[int],
activation_fn: Callable[[tensorflow.python.framework.ops.Tensor], tensor-
flow.python.framework.ops.Tensor] = <function relu>, dropout_keep_prob: float = 0.5,
save_checkpoint: Union[str, NoneType] = None, load_checkpoint: Union[str, NoneType] =
None, initializers: List[Tuple[str, Callable]] = None)→ None

Construct a new instance of the sequence classifier.

Parameters

• name – Name of the decoder. Should be unique accross all Neural Monkey objects

• encoders – Input encoders of the decoder

• vocabulary – Target vocabulary

• data_id – Target data series

• layers – List defining structure of the NN. Ini example: layers=[100,20,5] ;creates clas-
sifier with hidden layers of

size 100, 20, 5 and one output layer depending on the size of vocabulary

• activation_fn – activation function used on the output of each hidden layer.

• dropout_keep_prob – Probability of keeping a value during dropout

cost

decoded

decoded_logits

decoded_seq

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

loss_with_decoded_ins

48 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

loss_with_gt_ins

runtime_logprobs

runtime_loss

train_loss

neuralmonkey.decoders.ctc_decoder module

class neuralmonkey.decoders.ctc_decoder.CTCDecoder(name: str, encoder: neural-
monkey.model.stateful.TemporalStateful,
vocabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str, max_length: int =
None, merge_repeated_targets:
bool = False,
merge_repeated_outputs: bool
= True, beam_width: int = 1,
save_checkpoint: str = None,
load_checkpoint: str = None,
initializers: List[Tuple[str,
Callable]] = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart

Connectionist Temporal Classification.

See tf.nn.ctc_loss, tf.nn.ctc_greedy_decoder etc.

__init__(name: str, encoder: neuralmonkey.model.stateful.TemporalStateful, vocabulary:
neuralmonkey.vocabulary.Vocabulary, data_id: str, max_length: int = None,
merge_repeated_targets: bool = False, merge_repeated_outputs: bool = True, beam_width:
int = 1, save_checkpoint: str = None, load_checkpoint: str = None, initializers:
List[Tuple[str, Callable]] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

cost

decoded

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

logits

runtime_loss

train_loss

1.6. API Documentation 49

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.decoder module

class neuralmonkey.decoders.decoder.Decoder(encoders: List[neuralmonkey.model.stateful.Stateful],
vocabulary: neural-
monkey.vocabulary.Vocabulary, data_id:
str, name: str, max_output_len:
int, dropout_keep_prob: float
= 1.0, embedding_size: int =
None, embeddings_source: neural-
monkey.model.sequence.EmbeddedSequence
= None, tie_embeddings: bool =
False, label_smoothing: float = None,
rnn_size: int = None, output_projection:
Union[Tuple[Callable[[tensorflow.python.framework.ops.Tensor,
tensorflow.python.framework.ops.Tensor,
List[tensorflow.python.framework.ops.Tensor],
tensorflow.python.framework.ops.Tensor],
tensorflow.python.framework.ops.Tensor],
int], Callable[[tensorflow.python.framework.ops.Tensor,
tensorflow.python.framework.ops.Tensor,
List[tensorflow.python.framework.ops.Tensor],
tensorflow.python.framework.ops.Tensor],
tensorflow.python.framework.ops.Tensor]]
= None, encoder_projection:
Callable[[tensorflow.python.framework.ops.Tensor,
int, List[neuralmonkey.model.stateful.Stateful]],
tensorflow.python.framework.ops.Tensor]
= None, attentions:
List[neuralmonkey.attention.base_attention.BaseAttention]
= None, attention_on_input: bool = False,
rnn_cell: str = ’GRU’, conditional_gru:
bool = False, supress_unk: bool =
False, save_checkpoint: str = None,
load_checkpoint: str = None, initializers:
List[Tuple[str, Callable]] = None)→ None

Bases: neuralmonkey.decoders.autoregressive.AutoregressiveDecoder

A class managing parts of the computation graph used during decoding.

50 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

__init__(encoders: List[neuralmonkey.model.stateful.Stateful], vocabulary: neural-
monkey.vocabulary.Vocabulary, data_id: str, name: str, max_output_len: int,
dropout_keep_prob: float = 1.0, embedding_size: int = None, embeddings_source:
neuralmonkey.model.sequence.EmbeddedSequence = None, tie_embeddings:
bool = False, label_smoothing: float = None, rnn_size: int = None, out-
put_projection: Union[Tuple[Callable[[tensorflow.python.framework.ops.Tensor, ten-
sorflow.python.framework.ops.Tensor, List[tensorflow.python.framework.ops.Tensor],
tensorflow.python.framework.ops.Tensor], tensorflow.python.framework.ops.Tensor],
int], Callable[[tensorflow.python.framework.ops.Tensor, tensor-
flow.python.framework.ops.Tensor, List[tensorflow.python.framework.ops.Tensor], ten-
sorflow.python.framework.ops.Tensor], tensorflow.python.framework.ops.Tensor]] =
None, encoder_projection: Callable[[tensorflow.python.framework.ops.Tensor, int,
List[neuralmonkey.model.stateful.Stateful]], tensorflow.python.framework.ops.Tensor]
= None, attentions: List[neuralmonkey.attention.base_attention.BaseAttention] = None,
attention_on_input: bool = False, rnn_cell: str = ’GRU’, conditional_gru: bool = False,
supress_unk: bool = False, save_checkpoint: str = None, load_checkpoint: str = None,
initializers: List[Tuple[str, Callable]] = None)→ None

Create a refactored version of monster decoder.

Parameters

• encoders – Input encoders of the decoder.

• vocabulary – Target vocabulary.

• data_id – Target data series.

• name – Name of the decoder. Should be unique accross all Neural Monkey objects.

• max_output_len – Maximum length of an output sequence.

• dropout_keep_prob – Probability of keeping a value during dropout.

• embedding_size – Size of embedding vectors for target words.

• embeddings_source – Embedded sequence to take embeddings from.

• tie_embeddings – Use decoder.embedding_matrix also in place of the output decod-
ing matrix.

Keyword Arguments

• rnn_size – Size of the decoder hidden state, if None set according to encoders.

• output_projection – How to generate distribution over vocabulary from de-
coder_outputs.

• encoder_projection – How to construct initial state from encoders.

• attention – The attention object to use. Optional.

• rnn_cell – RNN Cell used by the decoder (GRU or LSTM).

• conditional_gru – Flag whether to use the Conditional GRU architecture.

• attention_on_input – Flag whether attention from previous decoding step should
be combined with the input in the next step.

• supress_unk – If true, decoder will not produce symbols for unknown tokens.

embed_input_symbol(*args)→ tensorflow.python.framework.ops.Tensor

finalize_loop(final_loop_state: neuralmonkey.decoders.autoregressive.LoopState, train_mode:
bool)→ None

Execute post-while loop operations.

1.6. API Documentation 51

Neural Monkey Documentation, Release 0.1

Parameters

• final_loop_state – Decoder loop state at the end of the decoding loop.

• train_mode – Boolean flag, telling whether this is a training run.

get_body(train_mode: bool, sample: bool = False, temperature: float = 1)→ Callable
Return the while loop body function.

get_initial_loop_state()→ neuralmonkey.decoders.autoregressive.LoopState

initial_state
Compute initial decoder state.

The part of the computation graph that computes the initial state of the decoder.

input_plus_attention(*args)→ tensorflow.python.framework.ops.Tensor
Merge input and previous attentions.

Input and previous attentions are merged into a single vector of the size fo embedding.

output_dimension

class neuralmonkey.decoders.decoder.RNNFeedables
Bases: neuralmonkey.decoders.decoder.RNNFeedables

The feedables used by an RNN-based decoder.

Shares attributes with the DecoderFeedables class. The special attributes are listed below.

prev_rnn_state
The recurrent state from the previous step. A tensor of shape (batch, rnn_size)

prev_rnn_output
The output of the recurrent network from the previous step. A tensor of shape (batch,
output_size)

prev_contexts
A list of context vectors returned from attention mechanisms. Tensors of shape (batch,
encoder_state_size) for each attended encoder.

class neuralmonkey.decoders.decoder.RNNHistories
Bases: neuralmonkey.decoders.decoder.RNNHistories

The loop state histories for RNN-based decoders.

Shares attributes with the DecoderHistories class. The special attributes are listed below.

attention_histories
A list of AttentionLoopState objects (or similar) populated by values from the attention mechanisms
used in the decoder.

neuralmonkey.decoders.encoder_projection module

Encoder Projection Module.

This module contains different variants of projection of encoders into the initial state of the decoder.

Encoder projections are specified in the configuration file. Each encoder projection function has a unified type
EncoderProjection, which is a callable that takes three arguments:

1. train_mode – boolean tensor specifying whether the train mode is on

2. rnn_size – the size of the resulting initial state

52 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

3. encoders – a list of Stateful objects used as the encoders.

To enable further parameterization of encoder projection functions, one can use higher-order functions.

neuralmonkey.decoders.encoder_projection.concat_encoder_projection(train_mode:
tensor-
flow.python.framework.ops.Tensor,
rnn_size:
int =
None,
encoders:
List[neuralmonkey.model.stateful.Stateful]
= None)
→ tensor-
flow.python.framework.ops.Tensor

Concatenate the encoded values of the encoders.

neuralmonkey.decoders.encoder_projection.empty_initial_state(train_mode:
tensor-
flow.python.framework.ops.Tensor,
rnn_size: int,
encoders:
List[neuralmonkey.model.stateful.Stateful]
= None)→ tensor-
flow.python.framework.ops.Tensor

Return an empty vector.

neuralmonkey.decoders.encoder_projection.linear_encoder_projection(dropout_keep_prob:
float) →
Callable[[tensorflow.python.framework.ops.Tensor,
int,
List[neuralmonkey.model.stateful.Stateful]],
tensor-
flow.python.framework.ops.Tensor]

Return a linear encoder projection.

Return a projection function which applies dropout on concatenated encoder final states and returns a linear
projection to a rnn_size-sized tensor.

Parameters dropout_keep_prob – The dropout keep probability

neuralmonkey.decoders.encoder_projection.nematus_projection(dropout_keep_prob:
float = 1.0) →
Callable[[tensorflow.python.framework.ops.Tensor,
int,
List[neuralmonkey.model.stateful.Stateful]],
tensor-
flow.python.framework.ops.Tensor]

Return encoder projection used in Nematus.

The initial state is a dense projection with tanh activation computed on the averaged states of the encoders.
Dropout is applied to the means (before the projection).

Parameters dropout_keep_prob – The dropout keep probability.

neuralmonkey.decoders.output_projection module

Output Projection Module.

1.6. API Documentation 53

Neural Monkey Documentation, Release 0.1

This module contains different variants of projection functions of decoder outputs into the logit function inputs.

Output projections are specified in the configuration file. Each output projection function has a unified type
OutputProjection, which is a callable that takes four arguments and returns a tensor:

1. prev_state – the hidden state of the decoder.

2. prev_output – embedding of the previously decoded word (or train input)

3. ctx_tensots – a list of context vectors (for each attention object)

To enable further parameterization of output projection functions, one can use higher-order functions.

neuralmonkey.decoders.output_projection.maxout_output(maxout_size: int) → Tu-
ple[Callable[[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
List[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
int]

Apply maxout.

Compute RNN output out of the previous state and output, and the context tensors returned from attention
mechanisms, as described in the article

This function corresponds to the equations for computation the t_tilde in the Bahdanau et al. (2015) paper, on
page 14, with the maxout projection, before the last linear projection.

Parameters maxout_size – The size of the hidden maxout layer in the deep output

Returns Returns the maxout projection of the concatenated inputs

neuralmonkey.decoders.output_projection.mlp_output(layer_sizes: List[int], activation:
Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor]
= <function tanh>,
dropout_keep_prob:
float = 1.0) → Tu-
ple[Callable[[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
List[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
int]

Apply a multilayer perceptron.

Compute RNN deep output using the multilayer perceptron with a specified activation function. (Pascanu et al.,
2013 [https://arxiv.org/pdf/1312.6026v5.pdf])

Parameters

• layer_sizes – A list of sizes of the hiddel layers of the MLP

• dropout_keep_prob – the dropout keep probability

54 Chapter 1. Getting Started

https://arxiv.org/pdf/1312.6026v5.pdf

Neural Monkey Documentation, Release 0.1

• activation – The activation function to use in each layer.

neuralmonkey.decoders.output_projection.nematus_output(output_size: int,
activation_fn:
Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor]
= <function tanh>,
dropout_keep_prob:
float = 1.0) → Tu-
ple[Callable[[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
List[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
int]

Apply nonlinear one-hidden-layer deep output.

Implementation consistent with Nematus. Can be used instead of (and is in theory equivalent to) nonlin-
ear_output.

Projects the RNN state, embedding of the previously outputted word, and concatenation of all context vectors
into a shared vector space, sums them up and apply a hyperbolic tangent activation function.

neuralmonkey.decoders.output_projection.nonlinear_output(output_size: int,
activation_fn:
Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor]
= <function
tanh>) → Tu-
ple[Callable[[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
List[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
int]

1.6. API Documentation 55

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.sequence_labeler module

class neuralmonkey.decoders.sequence_labeler.SequenceLabeler(name: str, encoder:
Union[neuralmonkey.encoders.recurrent.RecurrentEncoder,
neural-
monkey.encoders.facebook_conv.SentenceEncoder],
vocabu-
lary: neural-
monkey.vocabulary.Vocabulary,
data_id: str,
dropout_keep_prob:
float = 1.0,
save_checkpoint:
Union[str, None-
Type] = None,
load_checkpoint:
Union[str, None-
Type] = None,
initializers:
List[Tuple[str,
Callable]] =
None)→ None

Bases: neuralmonkey.model.model_part.ModelPart

Classifier assing a label to each encoder’s state.

__init__(name: str, encoder: Union[neuralmonkey.encoders.recurrent.RecurrentEncoder,
neuralmonkey.encoders.facebook_conv.SentenceEncoder], vocabulary: neural-
monkey.vocabulary.Vocabulary, data_id: str, dropout_keep_prob: float = 1.0,
save_checkpoint: Union[str, NoneType] = None, load_checkpoint: Union[str, None-
Type] = None, initializers: List[Tuple[str, Callable]] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

cost

decoded

decoding_b

decoding_residual_w

decoding_w

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

logits

logprobs

runtime_loss

train_loss

56 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.decoders.sequence_regressor module

class neuralmonkey.decoders.sequence_regressor.SequenceRegressor(name: str,
encoders:
List[neuralmonkey.model.stateful.Stateful],
data_id: str,
layers:
List[int] =
None, acti-
vation_fn:
Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor]
= <func-
tion relu>,
dropout_keep_prob:
float = 1.0,
dimen-
sion: int = 1,
save_checkpoint:
str = None,
load_checkpoint:
str = None,
initializers:
List[Tuple[str,
Callable]]
= None) →
None

Bases: neuralmonkey.model.model_part.ModelPart

A simple MLP regression over encoders.

The API pretends it is an RNN decoder which always generates a sequence of length exactly one.

__init__(name: str, encoders: List[neuralmonkey.model.stateful.Stateful], data_id: str, layers:
List[int] = None, activation_fn: Callable[[tensorflow.python.framework.ops.Tensor], ten-
sorflow.python.framework.ops.Tensor] = <function relu>, dropout_keep_prob: float = 1.0,
dimension: int = 1, save_checkpoint: str = None, load_checkpoint: str = None, initializers:
List[Tuple[str, Callable]] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

cost

decoded

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

predictions

runtime_loss

train_loss

neuralmonkey.decoders.transformer module

Implementation of the decoder of the Transformer model.

1.6. API Documentation 57

Neural Monkey Documentation, Release 0.1

Described in Vaswani et al. (2017), arxiv.org/abs/1706.03762

class neuralmonkey.decoders.transformer.TransformerDecoder(name: str, encoder:
Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful],
vocabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str,
ff_hidden_size:
int, n_heads_self:
int, n_heads_enc:
int, depth: int,
max_output_len: int,
dropout_keep_prob:
float = 1.0, em-
bedding_size: int
= None, embed-
dings_source: neural-
monkey.model.sequence.EmbeddedSequence
= None,
tie_embeddings:
bool = True, la-
bel_smoothing:
float = None, atten-
tion_dropout_keep_prob:
float = 1.0,
use_att_transform_bias:
bool = False,
supress_unk:
bool = False,
save_checkpoint:
str = None,
load_checkpoint:
str = None)→ None

Bases: neuralmonkey.decoders.autoregressive.AutoregressiveDecoder

__init__(name: str, encoder: Union[neuralmonkey.model.stateful.TemporalStateful, neural-
monkey.model.stateful.SpatialStateful], vocabulary: neuralmonkey.vocabulary.Vocabulary,
data_id: str, ff_hidden_size: int, n_heads_self: int, n_heads_enc: int, depth: int,
max_output_len: int, dropout_keep_prob: float = 1.0, embedding_size: int = None, embed-
dings_source: neuralmonkey.model.sequence.EmbeddedSequence = None, tie_embeddings:
bool = True, label_smoothing: float = None, attention_dropout_keep_prob: float = 1.0,
use_att_transform_bias: bool = False, supress_unk: bool = False, save_checkpoint: str =
None, load_checkpoint: str = None)→ None

Create a decoder of the Transformer model.

Described in Vaswani et al. (2017), arxiv.org/abs/1706.03762

Parameters

• encoder – Input encoder of the decoder.

• vocabulary – Target vocabulary.

• data_id – Target data series.

• name – Name of the decoder. Should be unique accross all Neural Monkey objects.

58 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• max_output_len – Maximum length of an output sequence.

• dropout_keep_prob – Probability of keeping a value during dropout.

• embedding_size – Size of embedding vectors for target words.

• embeddings_source – Embedded sequence to take embeddings from.

• tie_embeddings – Use decoder.embedding_matrix also in place of the output decod-
ing matrix.

Keyword Arguments

• ff_hidden_size – Size of the feedforward sublayers.

• n_heads_self – Number of the self-attention heads.

• n_heads_enc – Number of the attention heads over the encoder.

• depth – Number of sublayers.

• label_smoothing – A label smoothing parameter for cross entropy loss computation.

• attention_dropout_keep_prob – Probability of keeping a value during dropout
on the attention output.

• supress_unk – If true, decoder will not produce symbols for unknown tokens.

embed_inputs(inputs: tensorflow.python.framework.ops.Tensor) → tensor-
flow.python.framework.ops.Tensor

embedded_train_inputs

encoder_attention_sublayer(queries: tensorflow.python.framework.ops.Tensor) → tensor-
flow.python.framework.ops.Tensor

Create the encoder-decoder attention sublayer.

feedforward_sublayer(layer_input: tensorflow.python.framework.ops.Tensor) → tensor-
flow.python.framework.ops.Tensor

Create the feed-forward network sublayer.

get_body(train_mode: bool, sample: bool = False, temperature: float = 1.0)→ Callable
Return the while loop body function.

get_initial_loop_state()→ neuralmonkey.decoders.autoregressive.LoopState

layer(level: int, inputs: tensorflow.python.framework.ops.Tensor, mask: tensor-
flow.python.framework.ops.Tensor)→ neuralmonkey.encoders.transformer.TransformerLayer

output_dimension

self_attention_sublayer(prev_layer: neuralmonkey.encoders.transformer.TransformerLayer)
→ tensorflow.python.framework.ops.Tensor

Create the decoder self-attention sublayer with output mask.

train_logits

class neuralmonkey.decoders.transformer.TransformerHistories
Bases: neuralmonkey.decoders.transformer.TransformerHistories

The loop state histories for the transformer decoder.

Shares attributes with the DecoderHistories class. The special attributes are listed below.

decoded_symbols
A tensor which stores the decoded symbols.

1.6. API Documentation 59

Neural Monkey Documentation, Release 0.1

input_mask
A float tensor with zeros and ones which marks the valid positions on the input.

neuralmonkey.decoders.word_alignment_decoder module

class neuralmonkey.decoders.word_alignment_decoder.WordAlignmentDecoder(encoder:
neu-
ral-
monkey.encoders.recurrent.RecurrentEncoder,
de-
coder:
neu-
ral-
monkey.decoders.decoder.Decoder,
data_id:
str,
name:
str,
ini-
tial-
iz-
ers:
List[Tuple[str,
Callable]]
=
None)
→
None

Bases: neuralmonkey.model.model_part.ModelPart

A decoder that computes soft alignment from an attentive encoder.

Loss is computed as cross-entropy against a reference alignment.

__init__(encoder: neuralmonkey.encoders.recurrent.RecurrentEncoder, decoder: neural-
monkey.decoders.decoder.Decoder, data_id: str, name: str, initializers: List[Tuple[str,
Callable]] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

alignment_target

cost

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

ref_alignment

60 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

Module contents

neuralmonkey.encoders package

Submodules

neuralmonkey.encoders.attentive module

class neuralmonkey.encoders.attentive.AttentiveEncoder(name: str, input_sequence:
Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful],
hidden_size: int,
num_heads: int, out-
put_size: int = None,
state_proj_size: int = None,
dropout_keep_prob: float
= 1.0, save_checkpoint: str
= None, load_checkpoint:
str = None, initializers:
List[Tuple[str, Callable]] =
None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

An encoder with attention over the input and a fixed-dimension output.

Based on “A Structured Self-attentive Sentence Embedding”, https://arxiv.org/abs/1703.03130.

The encoder combines a sequence of vectors into a fixed-size matrix where each row of the matrix is computed
using a different attention head. This matrix is exposed as the temporal_states property (the time dimen-
sion corresponds to the different attention heads). The output property provides a flattened and, optionally,
projected representation of this matrix.

__init__(name: str, input_sequence: Union[neuralmonkey.model.stateful.TemporalStateful, neural-
monkey.model.stateful.SpatialStateful], hidden_size: int, num_heads: int, output_size: int =
None, state_proj_size: int = None, dropout_keep_prob: float = 1.0, save_checkpoint: str
= None, load_checkpoint: str = None, initializers: List[Tuple[str, Callable]] = None) →
None

Initialize an instance of the encoder.

attention_weights

get_dependencies()→ Set[neuralmonkey.model.model_part.ModelPart]
Collect recusively all encoders and decoders.

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

temporal_mask
Return mask for the temporal_states.

A 2D Tensor of shape (batch, time) of type float32 which masks the temporal states so each sequence can
have a different length. It should only contain ones or zeros.

temporal_states
Return object states in time.

1.6. API Documentation 61

https://arxiv.org/abs/1703.03130

Neural Monkey Documentation, Release 0.1

A 3D Tensor of shape (batch, time, state_size) which contains the states of the object in time (e.g. hidden
states of a recurrent encoder.

neuralmonkey.encoders.cnn_encoder module

CNN for image processing.

class neuralmonkey.encoders.cnn_encoder.CNNEncoder(name: str, data_id: str, convo-
lutions: List[Union[Tuple[str,
int, int, str, int], Tuple[str,
int, int], Tuple[str, int, int,
str]]], image_height: int, im-
age_width: int, pixel_dim: int,
fully_connected: List[int] =
None, batch_normalize: bool =
False, dropout_keep_prob: float
= 0.5, save_checkpoint: str =
None, load_checkpoint: str =
None, initializers: List[Tuple[str,
Callable]] = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
SpatialStatefulWithOutput

An image encoder.

It projects the input image through a serie of convolutioal operations. The projected image is vertically cut and
fed to stacked RNN layers which encode the image into a single vector.

__init__(name: str, data_id: str, convolutions: List[Union[Tuple[str, int, int, str, int], Tuple[str,
int, int], Tuple[str, int, int, str]]], image_height: int, image_width: int, pixel_dim: int,
fully_connected: List[int] = None, batch_normalize: bool = False, dropout_keep_prob: float
= 0.5, save_checkpoint: str = None, load_checkpoint: str = None, initializers: List[Tuple[str,
Callable]] = None)→ None

Initialize a convolutional network for image processing.

The convolutional network can consist of plain convolutions, max-pooling layers and residual block. In
the configuration, they are specified using the following tuples.

• convolution: (“C”, kernel_size, stride, padding, out_channel);

• max / average pooling: (“M”/”A”, kernel_size, stride, padding);

• residual block: (“R”, kernel_size, out_channels).

Padding must be either “valid” or “same”.

Parameters

• convolutions – Configuration of convolutional layers.

• data_id – Identifier of the data series in the dataset.

• image_height – Height of the input image in pixels.

• image_width – Width of the image.

• pixel_dim – Number of color channels in the input images.

• dropout_keep_prob – Probability of keeping neurons active in dropout. Dropout is
done between all convolutional layers and fully connected layer.

62 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

batch_norm_callback(layer_output: tensorflow.python.framework.ops.Tensor) → tensor-
flow.python.framework.ops.Tensor

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

image_input

image_mask

image_processing_layers
Do all convolutions and return the last conditional map.

No dropout is applied between the convolutional layers. By default, the activation function is ReLU.

output
Output vector of the CNN.

If there are specified some fully connected layers, there are applied on top of the last convolutional map.
Dropout is applied between all layers, default activation function is ReLU. There are only projection layers,
no softmax is applied.

If there is fully_connected layer specified, average-pooled last convolutional map is used as a vector output.

spatial_mask
Return mask for the spatial_states.

A 3D Tensor of shape (batch, width, height) of type float32 which masks the spatial states that they can be
of different shapes. The mask should only contain ones or zeros.

spatial_states
Return object states in space.

A 4D Tensor of shape (batch, width, height, state_size) which contains the states of the object in space
(e.g. final layer of a convolution network processing an image.

class neuralmonkey.encoders.cnn_encoder.CNNTemporalView(name: str, cnn: neural-
monkey.encoders.cnn_encoder.CNNEncoder)
→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

Slice the convolutional maps left to right.

__init__(name: str, cnn: neuralmonkey.encoders.cnn_encoder.CNNEncoder)→ None
Initialize self. See help(type(self)) for accurate signature.

get_dependencies()→ Set[ModelPart]
Collect recusively all encoders and decoders.

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

temporal_mask
Return mask for the temporal_states.

A 2D Tensor of shape (batch, time) of type float32 which masks the temporal states so each sequence can
have a different length. It should only contain ones or zeros.

temporal_states
Return object states in time.

A 3D Tensor of shape (batch, time, state_size) which contains the states of the object in time (e.g. hidden
states of a recurrent encoder.

1.6. API Documentation 63

Neural Monkey Documentation, Release 0.1

neuralmonkey.encoders.cnn_encoder.plain_convolution(prev_layer: tensor-
flow.python.framework.ops.Tensor,
prev_mask: tensor-
flow.python.framework.ops.Tensor,
specification: Tuple[str, int, int,
str, int], batch_norm_callback:
Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
layer_num: int) → Tu-
ple[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
int]

neuralmonkey.encoders.cnn_encoder.pooling(prev_layer: tensor-
flow.python.framework.ops.Tensor, prev_mask:
tensorflow.python.framework.ops.Tensor,
specification: Tuple[str, int, int,
str], layer_num: int) → Tu-
ple[tensorflow.python.framework.ops.Tensor,
tensorflow.python.framework.ops.Tensor]

neuralmonkey.encoders.cnn_encoder.residual_block(prev_layer: tensor-
flow.python.framework.ops.Tensor,
prev_mask: tensor-
flow.python.framework.ops.Tensor,
prev_channels: int, spec-
ification: Tuple[str, int,
int], batch_norm_callback:
Callable[[tensorflow.python.framework.ops.Tensor],
tensor-
flow.python.framework.ops.Tensor],
layer_num: int) → Tu-
ple[tensorflow.python.framework.ops.Tensor,
tensor-
flow.python.framework.ops.Tensor,
int]

neuralmonkey.encoders.facebook_conv module

From the paper Convolutional Sequence to Sequence Learning.

http://arxiv.org/abs/1705.03122

64 Chapter 1. Getting Started

http://arxiv.org/abs/1705.03122

Neural Monkey Documentation, Release 0.1

class neuralmonkey.encoders.facebook_conv.SentenceEncoder(name: str, in-
put_sequence: neural-
monkey.model.sequence.EmbeddedSequence,
conv_features: int, en-
coder_layers: int,
kernel_width: int = 5,
dropout_keep_prob:
float = 1.0,
save_checkpoint: str =
None, load_checkpoint:
str = None, initial-
izers: List[Tuple[str,
Callable]] = None) →
None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

__init__(name: str, input_sequence: neuralmonkey.model.sequence.EmbeddedSequence,
conv_features: int, encoder_layers: int, kernel_width: int = 5, dropout_keep_prob:
float = 1.0, save_checkpoint: str = None, load_checkpoint: str = None, initializers:
List[Tuple[str, Callable]] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

order_embeddings

ordered_embedded_inputs

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

temporal_mask
Return mask for the temporal_states.

A 2D Tensor of shape (batch, time) of type float32 which masks the temporal states so each sequence can
have a different length. It should only contain ones or zeros.

temporal_states
Return object states in time.

A 3D Tensor of shape (batch, time, state_size) which contains the states of the object in time (e.g. hidden
states of a recurrent encoder.

neuralmonkey.encoders.imagenet_encoder module

Pre-trained ImageNet networks.

class neuralmonkey.encoders.imagenet_encoder.ImageNet(name: str, data_id:
str, network_type: str,
slim_models_path: str,
load_checkpoint: str = None,
spatial_layer: str = None,
encoded_layer: str = None,
initializers: List[Tuple[str,
Callable]] = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
SpatialStatefulWithOutput

1.6. API Documentation 65

Neural Monkey Documentation, Release 0.1

Pre-trained ImageNet network.

We use the ImageNet networks as they are in the tesnorflow/models repository (https://github.com/tensorflow/
models). In order use them, you need to clone the repository and configure the ImageNet object such that it has
a full path to “research/slim” in the repository. Visit https://github.com/tensorflow/models/tree/master/research/
slim for information about checkpoints of the pre-trained models.

__init__(name: str, data_id: str, network_type: str, slim_models_path: str, load_checkpoint: str =
None, spatial_layer: str = None, encoded_layer: str = None, initializers: List[Tuple[str,
Callable]] = None)→ None

Initialize pre-trained ImageNet network.

Parameters

• name – Name of the model part (the ImageNet network, will be in its scope, independently
on name).

• data_id – Id of series with images (list of 3D numpy arrays)

• network_type – Identifier of ImageNet network from TFSlim.

• spatial_layer – String identifier of the convolutional map (model’s endpoint). Check
TFSlim documentation for end point specifications.

• encoded_layer – String id of the network layer that will be used as input of a decoder.
None means averaging the convolutional maps.

• path_to_models – Path to Slim models in tensorflow/models repository.

• load_checkpoint – Checkpoint file from which the pre-trained network is loaded.

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

input_image

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

spatial_mask
Return mask for the spatial_states.

A 3D Tensor of shape (batch, width, height) of type float32 which masks the spatial states that they can be
of different shapes. The mask should only contain ones or zeros.

spatial_states
Return object states in space.

A 4D Tensor of shape (batch, width, height, state_size) which contains the states of the object in space
(e.g. final layer of a convolution network processing an image.

class neuralmonkey.encoders.imagenet_encoder.ImageNetSpec
Bases: neuralmonkey.encoders.imagenet_encoder.ImageNetSpec

Specification of the Imagenet encoder.

Do not use this object directly, instead, use one of the ‘‘get_*‘‘functions in this module.

scope
The variable scope of the network to use.

image_size
A tuple of two integers giving the image width and height in pixels.

66 Chapter 1. Getting Started

https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

Neural Monkey Documentation, Release 0.1

apply_net
The function that receives an image and applies the network.

neuralmonkey.encoders.imagenet_encoder.get_alexnet() → neural-
monkey.encoders.imagenet_encoder.ImageNetSpec

neuralmonkey.encoders.imagenet_encoder.get_resnet_by_type(resnet_type: str)
→ Callable[[], neural-
monkey.encoders.imagenet_encoder.ImageNetSpec]

neuralmonkey.encoders.imagenet_encoder.get_vgg_by_type(vgg_type: str) →
Callable[[], neural-
monkey.encoders.imagenet_encoder.ImageNetSpec]

neuralmonkey.encoders.numpy_stateful_filler module

class neuralmonkey.encoders.numpy_stateful_filler.SpatialFiller(name: str,
input_shape:
List[int],
data_id:
str, projec-
tion_dim:
int = None,
ff_hidden_dim:
int = None,
save_checkpoint:
str = None,
load_checkpoint:
str = None,
initializers:
List[Tuple[str,
Callable]]
= None) →
None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
SpatialStatefulWithOutput

Placeholder class for 3D numerical input.

This model part is used to feed 3D tensors (e.g., pre-trained convolutional maps image captioning). Optionally,
the states are projected to given size.

__init__(name: str, input_shape: List[int], data_id: str, projection_dim: int = None, ff_hidden_dim:
int = None, save_checkpoint: str = None, load_checkpoint: str = None, initializers:
List[Tuple[str, Callable]] = None)→ None

Instantiate SpatialFiller.

Parameters

• name – Name of the model part.

• input_shape – Dimensionality of the input.

• data_id – Name of the data series with numpy objects.

• projection_dim – Optional, dimension of the states projection.

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

1.6. API Documentation 67

Neural Monkey Documentation, Release 0.1

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

spatial_mask
Return mask for the spatial_states.

A 3D Tensor of shape (batch, width, height) of type float32 which masks the spatial states that they can be
of different shapes. The mask should only contain ones or zeros.

spatial_states
Return object states in space.

A 4D Tensor of shape (batch, width, height, state_size) which contains the states of the object in space
(e.g. final layer of a convolution network processing an image.

class neuralmonkey.encoders.numpy_stateful_filler.StatefulFiller(name: str,
dimension:
int, data_id:
str, out-
put_shape:
int = None,
save_checkpoint:
str = None,
load_checkpoint:
str = None,
initializers:
List[Tuple[str,
Callable]]
= None) →
None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
Stateful

Placeholder class for stateful input.

This model part is used to feed 1D tensors to the model. Optionally, it projects the states to given dimension.

__init__(name: str, dimension: int, data_id: str, output_shape: int = None, save_checkpoint: str
= None, load_checkpoint: str = None, initializers: List[Tuple[str, Callable]] = None) →
None

Instantiate StatefulFiller.

Parameters

• name – Name of the model part.

• dimension – Dimensionality of the input.

• data_id – Series containing the numpy objects.

• output_shape – Dimension of optional state projection.

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

68 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.encoders.pooling module

class neuralmonkey.encoders.pooling.SequenceAveragePooling(name: str, in-
put_sequence: neural-
monkey.model.stateful.TemporalStateful,
save_checkpoint:
str = None,
load_checkpoint:
str = None, initializ-
ers: List[Tuple[str,
Callable]] = None)
→ None

Bases: neuralmonkey.encoders.pooling.SequencePooling

An average pooling layer over a sequence.

Averages a sequence over time to produce a single state.

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

class neuralmonkey.encoders.pooling.SequenceMaxPooling(name: str, in-
put_sequence: neural-
monkey.model.stateful.TemporalStateful,
save_checkpoint: str =
None, load_checkpoint:
str = None, initializers:
List[Tuple[str, Callable]] =
None)→ None

Bases: neuralmonkey.encoders.pooling.SequencePooling

A max pooling layer over a sequence.

Takes the maximum of a sequence over time to produce a single state.

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

class neuralmonkey.encoders.pooling.SequencePooling(name: str, in-
put_sequence: neural-
monkey.model.stateful.TemporalStateful,
save_checkpoint: str = None,
load_checkpoint: str = None,
initializers: List[Tuple[str,
Callable]] = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
Stateful

An abstract pooling layer over a sequence.

__init__(name: str, input_sequence: neuralmonkey.model.stateful.TemporalStateful,
save_checkpoint: str = None, load_checkpoint: str = None, initializers: List[Tuple[str,
Callable]] = None)→ None

Initialize an instance of the pooling layer.

get_dependencies()→ Set[neuralmonkey.model.model_part.ModelPart]
Collect recusively all encoders and decoders.

1.6. API Documentation 69

Neural Monkey Documentation, Release 0.1

neuralmonkey.encoders.raw_rnn_encoder module

class neuralmonkey.encoders.raw_rnn_encoder.RawRNNEncoder(name: str, data_id:
str, input_size:
int, rnn_layers:
List[Union[Tuple[int],
Tuple[int, str], Tu-
ple[int, str, str]]],
max_input_len:
Union[int, None-
Type] = None,
dropout_keep_prob:
float = 1.0,
save_checkpoint:
Union[str, NoneType] =
None, load_checkpoint:
Union[str, NoneType]
= None, initializ-
ers: List[Tuple[str,
Callable]] = None) →
None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

A raw RNN encoder that gets input as a tensor.

__init__(name: str, data_id: str, input_size: int, rnn_layers: List[Union[Tuple[int], Tuple[int, str],
Tuple[int, str, str]]], max_input_len: Union[int, NoneType] = None, dropout_keep_prob:
float = 1.0, save_checkpoint: Union[str, NoneType] = None, load_checkpoint: Union[str,
NoneType] = None, initializers: List[Tuple[str, Callable]] = None)→ None

Create a new instance of the encoder.

Parameters

• data_id – Identifier of the data series fed to this encoder

• name – An unique identifier for this encoder

• rnn_layers – A list of tuples specifying the size and, optionally, the direction (‘for-
ward’, ‘backward’ or ‘bidirectional’) and cell type (‘GRU’ or ‘LSTM’) of each RNN layer.

Keyword Arguments dropout_keep_prob – The dropout keep probability (default 1.0)

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

Populate the feed dictionary with the encoder inputs.

Parameters

• dataset – The dataset to use

• train – Boolean flag telling whether it is training time

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

temporal_mask
Return mask for the temporal_states.

70 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

A 2D Tensor of shape (batch, time) of type float32 which masks the temporal states so each sequence can
have a different length. It should only contain ones or zeros.

temporal_states
Return object states in time.

A 3D Tensor of shape (batch, time, state_size) which contains the states of the object in time (e.g. hidden
states of a recurrent encoder.

neuralmonkey.encoders.recurrent module

class neuralmonkey.encoders.recurrent.DeepSentenceEncoder(name: str, vo-
cabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str, em-
bedding_size: int,
rnn_sizes: List[int],
rnn_directions:
List[str], rnn_cell:
str = ’GRU’,
add_residual: bool =
False, max_input_len:
int = None,
dropout_keep_prob:
float = 1.0,
save_checkpoint: str =
None, load_checkpoint:
str = None, initial-
izers: List[Tuple[str,
Callable]] = None,
embedding_initializer:
Callable = None) →
None

Bases: neuralmonkey.encoders.recurrent.SentenceEncoder

__init__(name: str, vocabulary: neuralmonkey.vocabulary.Vocabulary, data_id: str, embedding_size:
int, rnn_sizes: List[int], rnn_directions: List[str], rnn_cell: str = ’GRU’, add_residual:
bool = False, max_input_len: int = None, dropout_keep_prob: float = 1.0, save_checkpoint:
str = None, load_checkpoint: str = None, initializers: List[Tuple[str, Callable]] = None,
embedding_initializer: Callable = None)→ None

Create a new instance of the deep sentence encoder.

Parameters

• name – ModelPart name.

• vocabulary – The input vocabulary.

• data_id – The input sequence data ID.

• embedding_size – The dimension of the embedding vectors in the input sequence.

• max_input_len – Maximum length of the input sequence (disregard tokens after this
position).

• rnn_sizes – The list of dimensions of the RNN hidden state vectors in respective layers.

• rnn_cell – One of “GRU”, “NematusGRU”, “LSTM”. Which kind of memory cell to
use.

1.6. API Documentation 71

Neural Monkey Documentation, Release 0.1

• rnn_directions – The list of rnn directions in the respective layers. Should be equally
long as rnn_sizes. Each item must be one of “forward”, “backward”, “bidirectional”.
Determines in what order to process the input sequence. Note that choosing “bidirectional”
will double the resulting vector dimension as well as the number of the parameters in the
given layer.

• add_residual – Add residual connections to each RNN layer output.

• dropout_keep_prob – 1 - dropout probability.

• save_checkpoint – ModelPart save checkpoint file.

• load_checkpoint – ModelPart load checkpoint file.

rnn
Run stacked RNN given sizes and directions.

Inputs of the first RNN are the RNN inputs to the encoder. Outputs from each layer are used as inputs to
the next one. As a final state of the stacked RNN, the final state of the final layer is used.

class neuralmonkey.encoders.recurrent.FactoredEncoder(name: str, vocabularies:
List[neuralmonkey.vocabulary.Vocabulary],
data_ids: List[str], em-
bedding_sizes: List[int],
rnn_size: int, rnn_cell: str
= ’GRU’, rnn_direction:
str = ’bidirectional’,
add_residual: bool = False,
max_input_len: int = None,
dropout_keep_prob: float
= 1.0, save_checkpoint: str
= None, load_checkpoint:
str = None, initializers:
List[Tuple[str, Callable]]
= None, input_initializers:
List[Tuple[str, Callable]] =
None)→ None

Bases: neuralmonkey.encoders.recurrent.RecurrentEncoder

__init__(name: str, vocabularies: List[neuralmonkey.vocabulary.Vocabulary], data_ids: List[str],
embedding_sizes: List[int], rnn_size: int, rnn_cell: str = ’GRU’, rnn_direction: str = ’bidi-
rectional’, add_residual: bool = False, max_input_len: int = None, dropout_keep_prob:
float = 1.0, save_checkpoint: str = None, load_checkpoint: str = None, initializers:
List[Tuple[str, Callable]] = None, input_initializers: List[Tuple[str, Callable]] = None)
→ None

Create a new instance of the factored encoder.

Parameters

• name – ModelPart name.

• vocabularies – The vocabularies for each factor.

• data_ids – The input sequence data ID for each factor.

• embedding_sizes – The dimension of the embedding vectors in the input sequence
for each factor.

• max_input_len – Maximum length of the input sequence (disregard tokens after this
position).

• rnn_size – The dimension of the RNN hidden state vector.

72 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• rnn_cell – One of “GRU”, “NematusGRU”, “LSTM”. Which kind of memory cell to
use.

• rnn_direction – One of “forward”, “backward”, “bidirectional”. In what order to
process the input sequence. Note that choosing “bidirectional” will double the resulting
vector dimension as well as the number of encoder parameters.

• add_residual – Add residual connections to the RNN layer output.

• dropout_keep_prob – 1 - dropout probability.

• save_checkpoint – ModelPart save checkpoint file.

• load_checkpoint – ModelPart load checkpoint file.

class neuralmonkey.encoders.recurrent.RNNSpec
Bases: neuralmonkey.encoders.recurrent.RNNSpec

Recurrent neural network specifications.

size
The state size.

direction
The RNN processing direction. One of forward, backward, and bidirectional.

cell_type
The recurrent cell type to use. Refer to encoders.recurrent.RNN_CELL_TYPES for possible
values.

class neuralmonkey.encoders.recurrent.RecurrentEncoder(name: str, in-
put_sequence: neural-
monkey.model.stateful.TemporalStateful,
rnn_size: int, rnn_cell: str
= ’GRU’, rnn_direction:
str = ’bidirectional’,
add_residual: bool = False,
dropout_keep_prob: float
= 1.0, save_checkpoint: str
= None, load_checkpoint:
str = None, initializers:
List[Tuple[str, Callable]] =
None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

__init__(name: str, input_sequence: neuralmonkey.model.stateful.TemporalStateful, rnn_size: int,
rnn_cell: str = ’GRU’, rnn_direction: str = ’bidirectional’, add_residual: bool = False,
dropout_keep_prob: float = 1.0, save_checkpoint: str = None, load_checkpoint: str = None,
initializers: List[Tuple[str, Callable]] = None)→ None

Create a new instance of a recurrent encoder.

Parameters

• name – ModelPart name.

• input_seqeunce – The input sequence for the encoder.

• rnn_size – The dimension of the RNN hidden state vector.

• rnn_cell – One of “GRU”, “NematusGRU”, “LSTM”. Which kind of memory cell to
use.

1.6. API Documentation 73

Neural Monkey Documentation, Release 0.1

• rnn_direction – One of “forward”, “backward”, “bidirectional”. In what order to
process the input sequence. Note that choosing “bidirectional” will double the resulting
vector dimension as well as the number of encoder parameters.

• add_residual – Add residual connections to the RNN layer output.

• dropout_keep_prob – 1 - dropout probability.

• save_checkpoint – ModelPart save checkpoint file.

• load_checkpoint – ModelPart load checkpoint file.

get_dependencies()→ Set[neuralmonkey.model.model_part.ModelPart]
Collect recusively all encoders and decoders.

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

rnn

rnn_input

temporal_mask
Return mask for the temporal_states.

A 2D Tensor of shape (batch, time) of type float32 which masks the temporal states so each sequence can
have a different length. It should only contain ones or zeros.

temporal_states
Return object states in time.

A 3D Tensor of shape (batch, time, state_size) which contains the states of the object in time (e.g. hidden
states of a recurrent encoder.

class neuralmonkey.encoders.recurrent.SentenceEncoder(name: str, vo-
cabulary: neural-
monkey.vocabulary.Vocabulary,
data_id: str, embed-
ding_size: int, rnn_size:
int, rnn_cell: str = ’GRU’,
rnn_direction: str = ’bidirec-
tional’, add_residual: bool
= False, max_input_len: int
= None, dropout_keep_prob:
float = 1.0, save_checkpoint:
str = None, load_checkpoint:
str = None, initializers:
List[Tuple[str, Callable]] =
None, embedding_initializer:
Callable = None)→ None

Bases: neuralmonkey.encoders.recurrent.RecurrentEncoder

__init__(name: str, vocabulary: neuralmonkey.vocabulary.Vocabulary, data_id: str, embedding_size:
int, rnn_size: int, rnn_cell: str = ’GRU’, rnn_direction: str = ’bidirectional’, add_residual:
bool = False, max_input_len: int = None, dropout_keep_prob: float = 1.0, save_checkpoint:
str = None, load_checkpoint: str = None, initializers: List[Tuple[str, Callable]] = None,
embedding_initializer: Callable = None)→ None

Create a new instance of the sentence encoder.

Parameters

74 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• name – ModelPart name.

• vocabulary – The input vocabulary.

• data_id – The input sequence data ID.

• embedding_size – The dimension of the embedding vectors in the input sequence.

• max_input_len – Maximum length of the input sequence (disregard tokens after this
position).

• rnn_size – The dimension of the RNN hidden state vector.

• rnn_cell – One of “GRU”, “NematusGRU”, “LSTM”. Which kind of memory cell to
use.

• rnn_direction – One of “forward”, “backward”, “bidirectional”. In what order to
process the input sequence. Note that choosing “bidirectional” will double the resulting
vector dimension as well as the number of encoder parameters.

• add_residual – Add residual connections to the RNN layer output.

• dropout_keep_prob – 1 - dropout probability.

• save_checkpoint – ModelPart save checkpoint file.

• load_checkpoint – ModelPart load checkpoint file.

neuralmonkey.encoders.recurrent.rnn_layer(rnn_input: tensor-
flow.python.framework.ops.Tensor, lengths:
tensorflow.python.framework.ops.Tensor,
rnn_spec: neural-
monkey.encoders.recurrent.RNNSpec,
add_residual: bool) → Tu-
ple[tensorflow.python.framework.ops.Tensor,
tensorflow.python.framework.ops.Tensor]

Construct a RNN layer given its inputs and specs.

Parameters

• rnn_inputs – The input sequence to the RNN.

• lengths – Lengths of input sequences.

• rnn_spec – A valid RNNSpec tuple specifying the network architecture.

• add_residual – Add residual connections to the layer output.

neuralmonkey.encoders.sentence_cnn_encoder module

Encoder for sentences withou explicit segmentation.

1.6. API Documentation 75

Neural Monkey Documentation, Release 0.1

class neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder(name:
str, in-
put_sequence:
neural-
monkey.model.sequence.Sequence,
seg-
ment_size:
int, high-
way_depth:
int,
rnn_size:
int,
filters:
List[Tuple[int,
int]],
dropout_keep_prob:
float
= 1.0,
use_noisy_activations:
bool =
False,
save_checkpoint:
Union[str,
None-
Type] =
None,
load_checkpoint:
Union[str,
None-
Type] =
None,
initial-
izers:
List[Tuple[str,
Callable]]
= None)
→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

Recurrent over Convolutional Encoder.

Encoder processing a sentence using a CNN then running a bidirectional RNN on the result.

Based on: Jason Lee, Kyunghyun Cho, Thomas Hofmann: Fully Character-Level Neural Machine Translation
without Explicit Segmentation.

See https://arxiv.org/pdf/1610.03017.pdf

__init__(name: str, input_sequence: neuralmonkey.model.sequence.Sequence, segment_size: int,
highway_depth: int, rnn_size: int, filters: List[Tuple[int, int]], dropout_keep_prob: float =
1.0, use_noisy_activations: bool = False, save_checkpoint: Union[str, NoneType] = None,
load_checkpoint: Union[str, NoneType] = None, initializers: List[Tuple[str, Callable]] =
None)→ None

Create a new instance of the sentence encoder.

Parameters

76 Chapter 1. Getting Started

https://arxiv.org/pdf/1610.03017.pdf

Neural Monkey Documentation, Release 0.1

• name – An unique identifier for this encoder

• segment_size – The size of the segments over which we apply max-pooling.

• highway_depth – Depth of the highway layer.

• rnn_size – The size of the encoder’s hidden state. Note that the actual encoder output
state size will be twice as long because it is the result of concatenation of forward and
backward hidden states.

• filters – Specification of CNN filters. It is a list of tuples specifying the filter size and
number of channels.

Keyword Arguments dropout_keep_prob – The dropout keep probability (default 1.0)

bidirectional_rnn

cnn_encoded
1D convolution with max-pool that processing characters.

highway_layer
Highway net projection following the CNN.

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

rnn_cells() → Tuple[tensorflow.python.ops.rnn_cell_impl.RNNCell, tensor-
flow.python.ops.rnn_cell_impl.RNNCell]

Return the graph template to for creating RNN memory cells.

temporal_mask
Return mask for the temporal_states.

A 2D Tensor of shape (batch, time) of type float32 which masks the temporal states so each sequence can
have a different length. It should only contain ones or zeros.

temporal_states
Return object states in time.

A 3D Tensor of shape (batch, time, state_size) which contains the states of the object in time (e.g. hidden
states of a recurrent encoder.

neuralmonkey.encoders.sequence_cnn_encoder module

Encoder for sentence classification with 1D convolutions and max-pooling.

1.6. API Documentation 77

Neural Monkey Documentation, Release 0.1

class neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder(name:
str,
vocab-
ulary:
neural-
monkey.vocabulary.Vocabulary,
data_id:
str,
embed-
ding_size:
int,
filters:
List[Tuple[int,
int]],
max_input_len:
Union[int,
None-
Type] =
None,
dropout_keep_prob:
float
= 1.0,
save_checkpoint:
Union[str,
None-
Type] =
None,
load_checkpoint:
Union[str,
None-
Type] =
None,
initial-
izers:
List[Tuple[str,
Callable]]
= None)
→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
Stateful

Encoder processing a sequence using a CNN.

__init__(name: str, vocabulary: neuralmonkey.vocabulary.Vocabulary, data_id: str, embed-
ding_size: int, filters: List[Tuple[int, int]], max_input_len: Union[int, NoneType] =
None, dropout_keep_prob: float = 1.0, save_checkpoint: Union[str, NoneType] = None,
load_checkpoint: Union[str, NoneType] = None, initializers: List[Tuple[str, Callable]] =
None)→ None

Create a new instance of the CNN sequence encoder.

Based on: Yoon Kim: Convolutional Neural Networks for Sentence Classification (http://emnlp2014.org/
papers/pdf/EMNLP2014181.pdf)

Parameters

• vocabulary – Input vocabulary

78 Chapter 1. Getting Started

http://emnlp2014.org/papers/pdf/EMNLP2014181.pdf
http://emnlp2014.org/papers/pdf/EMNLP2014181.pdf

Neural Monkey Documentation, Release 0.1

• data_id – Identifier of the data series fed to this encoder

• name – An unique identifier for this encoder

• max_input_len – Maximum length of an encoded sequence

• embedding_size – The size of the embedding vector assigned to each word

• filters – Specification of CNN filters. It is a list of tuples specifying the filter size and
number of channels.

• dropout_keep_prob – The dropout keep probability (default 1.0)

embedded_inputs

feed_dict(dataset: neuralmonkey.dataset.dataset.Dataset, train: bool = False) →
Dict[tensorflow.python.framework.ops.Tensor, Any]

Populate the feed dictionary with the encoder inputs.

Parameters

• dataset – The dataset to use

• train – Boolean flag telling whether it is training time

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

neuralmonkey.encoders.transformer module

Implementation of the encoder of the Transformer model.

Described in Vaswani et al. (2017), arxiv.org/abs/1706.03762

1.6. API Documentation 79

Neural Monkey Documentation, Release 0.1

class neuralmonkey.encoders.transformer.TransformerEncoder(name: str, in-
put_sequence: neural-
monkey.model.stateful.TemporalStateful,
ff_hidden_size:
int, depth: int,
n_heads: int,
dropout_keep_prob:
float = 1.0, atten-
tion_dropout_keep_prob:
float = 1.0, tar-
get_space_id:
int = None,
use_att_transform_bias:
bool = False,
use_positional_encoding:
bool = True, in-
put_for_cross_attention:
Union[neuralmonkey.model.stateful.TemporalStateful,
neural-
monkey.model.stateful.SpatialStateful]
= None,
n_cross_att_heads:
int = None,
save_checkpoint:
str = None,
load_checkpoint:
str = None)→ None

Bases: neuralmonkey.model.model_part.ModelPart, neuralmonkey.model.stateful.
TemporalStatefulWithOutput

__init__(name: str, input_sequence: neuralmonkey.model.stateful.TemporalStateful,
ff_hidden_size: int, depth: int, n_heads: int, dropout_keep_prob: float =
1.0, attention_dropout_keep_prob: float = 1.0, target_space_id: int = None,
use_att_transform_bias: bool = False, use_positional_encoding: bool = True, in-
put_for_cross_attention: Union[neuralmonkey.model.stateful.TemporalStateful, neu-
ralmonkey.model.stateful.SpatialStateful] = None, n_cross_att_heads: int = None,
save_checkpoint: str = None, load_checkpoint: str = None)→ None

Create an encoder of the Transformer model.

Described in Vaswani et al. (2017), arxiv.org/abs/1706.03762

Parameters

• input_sequence – Embedded input sequence.

• name – Name of the decoder. Should be unique accross all Neural Monkey objects.

• dropout_keep_prob – Probability of keeping a value during dropout.

• target_space_id – Specifies the modality of the target space.

• use_att_transform_bias – Add bias when transforming qkv vectors for attention.

• use_positional_encoding – If True, position encoding signal is added to the input.

Keyword Arguments

• ff_hidden_size – Size of the feedforward sublayers.

• n_heads – Number of the self-attention heads.

80 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• depth – Number of sublayers.

• attention_dropout_keep_prob – Probability of keeping a value during dropout
on the attention output.

• input_for_cross_attention – An attendable model part that is attended using
cross-attention on every layer of the decoder, analogically to how encoder is attended in
the decoder.

• n_cross_att_heads – Number of heads used in the cross-attention.

cross_attention_sublayer(queries: tensorflow.python.framework.ops.Tensor) → tensor-
flow.python.framework.ops.Tensor

encoder_inputs

feedforward_sublayer(layer_input: tensorflow.python.framework.ops.Tensor) → tensor-
flow.python.framework.ops.Tensor

Create the feed-forward network sublayer.

get_dependencies()→ Set[neuralmonkey.model.model_part.ModelPart]
Collect recusively all inputs.

layer(level: int)→ neuralmonkey.encoders.transformer.TransformerLayer

modality_matrix
Create an embedding matrix for varyining target modalities.

Used to embed different target space modalities in the tensor2tensor models (e.g. during the zero-shot
translation).

output
Return the object output.

A 2D Tensor of shape (batch, state_size) which contains the resulting state of the object.

self_attention_sublayer(prev_layer: neuralmonkey.encoders.transformer.TransformerLayer)
→ tensorflow.python.framework.ops.Tensor

Create the encoder self-attention sublayer.

target_modality_embedding
Gather correct embedding of the target space modality.

See TransformerEncoder.modality_matrix for more information.

temporal_mask
Return mask for the temporal_states.

A 2D Tensor of shape (batch, time) of type float32 which masks the temporal states so each sequence can
have a different length. It should only contain ones or zeros.

temporal_states
Return object states in time.

A 3D Tensor of shape (batch, time, state_size) which contains the states of the object in time (e.g. hidden
states of a recurrent encoder.

class neuralmonkey.encoders.transformer.TransformerLayer(states: tensor-
flow.python.framework.ops.Tensor,
mask: tensor-
flow.python.framework.ops.Tensor)
→ None

Bases: neuralmonkey.model.stateful.TemporalStateful

1.6. API Documentation 81

Neural Monkey Documentation, Release 0.1

__init__(states: tensorflow.python.framework.ops.Tensor, mask: tensor-
flow.python.framework.ops.Tensor)→ None

Initialize self. See help(type(self)) for accurate signature.

temporal_mask
Return mask for the temporal_states.

A 2D Tensor of shape (batch, time) of type float32 which masks the temporal states so each sequence can
have a different length. It should only contain ones or zeros.

temporal_states
Return object states in time.

A 3D Tensor of shape (batch, time, state_size) which contains the states of the object in time (e.g. hidden
states of a recurrent encoder.

neuralmonkey.encoders.transformer.position_signal(dimension: int, length: tensor-
flow.python.framework.ops.Tensor)
→ tensor-
flow.python.framework.ops.Tensor

Module contents

neuralmonkey.evaluators package

Submodules

neuralmonkey.evaluators.accuracy module

class neuralmonkey.evaluators.accuracy.AccuracyEvaluator(name: str = ’Accuracy’)
→ None

Bases: object

__init__(name: str = ’Accuracy’)→ None
Initialize self. See help(type(self)) for accurate signature.

static compare_scores(score2: float)→ int

class neuralmonkey.evaluators.accuracy.AccuracySeqLevelEvaluator(name: str =
’AccuracySe-
qLevel’) →
None

Bases: object

__init__(name: str = ’AccuracySeqLevel’)→ None
Initialize self. See help(type(self)) for accurate signature.

static compare_scores(score2: float)→ int

neuralmonkey.evaluators.average module

class neuralmonkey.evaluators.average.AverageEvaluator(name: str)→ None
Bases: object

Just average the numeric output of a runner.

__init__(name: str)→ None
Initialize self. See help(type(self)) for accurate signature.

82 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.evaluators.beer module

class neuralmonkey.evaluators.beer.BeerWrapper(wrapper: str, name: str = ’BEER’, en-
coding: str = ’utf-8’)→ None

Bases: object

Wrapper for BEER scorer.

Paper: http://aclweb.org/anthology/D14-1025 Code: https://github.com/stanojevic/beer

__init__(wrapper: str, name: str = ’BEER’, encoding: str = ’utf-8’)→ None
Initialize the BEER wrapper.

Parameters

• name – Name of the evaluator.

• wrapper – Path to the BEER’s executable.

• encoding – Data encoding.

serialize_to_bytes(sentences: List[List[str]])→ bytes

neuralmonkey.evaluators.bleu module

class neuralmonkey.evaluators.bleu.BLEUEvaluator(n: int = 4, deduplicate: bool =
False, name: str = None, mul-
tiple_references_separator: str =
None)→ None

Bases: object

__init__(n: int = 4, deduplicate: bool = False, name: str = None, multiple_references_separator: str
= None)→ None

Instantiate BLEU evaluator.

Parameters

• n – Longest n-grams considered.

• deduplicate – Flag whether repated tokes should be treated as one.

• name – Name displayed in the logs and TensorBoard.

• multiple_references_separator – Token that separates multiple reference sen-
tences. If None, it assumes the reference is one sentence only.

static bleu(references: List[List[List[str]]], ngrams: int = 4, case_sensitive: bool = True)
Compute BLEU on a corpus with multiple references.

The n-grams are uniformly weighted.

Default is to use smoothing as in reference implementation on: https://github.com/ufal/qtleap/blob/master/
cuni_train/bin/mteval-v13a.pl#L831-L873

Parameters

• hypotheses – List of hypotheses

• references – LIst of references. There can be more than one reference.

• ngrams – Maximum order of n-grams. Default 4.

• case_sensitive – Perform case-sensitive computation. Default True.

static compare_scores(score2: float)→ int

1.6. API Documentation 83

http://aclweb.org/anthology/D14-1025
https://github.com/stanojevic/beer
https://github.com/ufal/qtleap/blob/master/cuni_train/bin/mteval-v13a.pl#L831-L873
https://github.com/ufal/qtleap/blob/master/cuni_train/bin/mteval-v13a.pl#L831-L873

Neural Monkey Documentation, Release 0.1

static deduplicate_sentences()→ List[List[str]]

static effective_reference_length(references_list: List[List[List[str]]])→ int
Compute the effective reference corpus length.

The effective reference corpus length is based on best match length.

Parameters

• hypotheses – List of output sentences as lists of words

• references_list – List of lists of references (as lists of words)

static merge_max_counters()→ collections.Counter
Merge counters using maximum values.

static minimum_reference_length(references_list: List[List[str]])→ int
Compute the minimum reference corpus length.

The minimum reference corpus length is based on the shortest reference sentence length.

Parameters

• hypotheses – List of output sentences as lists of words

• references_list – List of lists of references (as lists of words)

static modified_ngram_precision(references_list: List[List[List[str]]], n: int,
case_sensitive: bool)→ Tuple[float, int]

Compute the modified n-gram precision on a list of sentences.

Parameters

• hypotheses – List of output sentences as lists of words

• references_list – List of lists of reference sentences (as lists of words)

• n – n-gram order

• case_sensitive – Whether to perform case-sensitive computation

static ngram_counts(n: int, lowercase: bool, delimiter: str = ’ ’)→ collections.Counter
Get n-grams from a sentence.

Parameters

• sentence – Sentence as a list of words

• n – n-gram order

• lowercase – Convert ngrams to lowercase

• delimiter – delimiter to use to create counter entries

neuralmonkey.evaluators.bleu_ref module

neuralmonkey.evaluators.chrf module

class neuralmonkey.evaluators.chrf.ChrFEvaluator(n: int = 6, beta: float = 1,
ignored_symbols: Union[List[str],
NoneType] = None, name: Union[str,
NoneType] = None)→ None

Bases: object

Compute ChrF score.

84 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

See http://www.statmt.org/wmt15/pdf/WMT49.pdf

__init__(n: int = 6, beta: float = 1, ignored_symbols: Union[List[str], NoneType] = None, name:
Union[str, NoneType] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

neuralmonkey.evaluators.edit_distance module

class neuralmonkey.evaluators.edit_distance.EditDistanceEvaluator(name: str
= ’Edit dis-
tance’) →
None

Bases: object

__init__(name: str = ’Edit distance’)→ None
Initialize self. See help(type(self)) for accurate signature.

static compare_scores(score2: float)→ int

static ratio(str2: str)→ float

neuralmonkey.evaluators.f1_bio module

class neuralmonkey.evaluators.f1_bio.F1Evaluator(name: str = ’F1 measure’)→ None
Bases: object

F1 evaluator for BIO tagging, e.g. NP chunking.

The entities are annotated as beginning of the entity (B), continuation of the entity (I), the rest is outside the
entity (O).

__init__(name: str = ’F1 measure’)→ None
Initialize self. See help(type(self)) for accurate signature.

static chunk2set()→ Set[str]

static f1_score(reference: List[str])→ float

neuralmonkey.evaluators.gleu module

class neuralmonkey.evaluators.gleu.GLEUEvaluator(n: int = 4, deduplicate: bool =
False, name: Union[str, NoneType] =
None)→ None

Bases: object

Sentence-level evaluation metric correlating with BLEU on corpus-level.

From “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Transla-
tion” by Wu et al. (https://arxiv.org/pdf/1609.08144v2.pdf)

GLEU is the minimum of recall and precision of all n-grams up to n in references and hypotheses.

Ngram counts are based on the bleu methods.

__init__(n: int = 4, deduplicate: bool = False, name: Union[str, NoneType] = None)→ None
Initialize self. See help(type(self)) for accurate signature.

static gleu(references: List[List[List[str]]], ngrams: int = 4, case_sensitive: bool = True)→ float
Compute GLEU on a corpus with multiple references (no smoothing).

1.6. API Documentation 85

http://www.statmt.org/wmt15/pdf/WMT49.pdf
https://arxiv.org/pdf/1609.08144v2.pdf

Neural Monkey Documentation, Release 0.1

Parameters

• hypotheses – List of hypotheses

• references – LIst of references. There can be more than one reference.

• ngrams – Maximum order of n-grams. Default 4.

• case_sensitive – Perform case-sensitive computation. Default True.

static total_precision_recall(references_list: List[List[List[str]]], ngrams: int,
case_sensitive: bool)→ Tuple[float, float]

Compute a modified n-gram precision and recall on a sentence list.

Parameters

• hypotheses – List of output sentences as lists of words

• references_list – List of lists of reference sentences (as lists of words)

• ngrams – n-gram order

• case_sensitive – Whether to perform case-sensitive computation

neuralmonkey.evaluators.mse module

class neuralmonkey.evaluators.mse.MeanSquaredErrorEvaluator(name: str = ’Mean-
SquaredError’) →
None

Bases: object

__init__(name: str = ’MeanSquaredError’)→ None
Initialize self. See help(type(self)) for accurate signature.

static compare_scores(score2: float)→ int

neuralmonkey.evaluators.multeval module

class neuralmonkey.evaluators.multeval.MultEvalWrapper(wrapper: str, name: str =
’MultEval’, encoding: str =
’utf-8’, metric: str = ’bleu’,
language: str = ’en’) →
None

Bases: object

Wrapper for mult-eval’s reference BLEU and METEOR scorer.

__init__(wrapper: str, name: str = ’MultEval’, encoding: str = ’utf-8’, metric: str = ’bleu’, language:
str = ’en’)→ None

Initialize the wrapper.

Parameters

• wrapper – path to multeval.sh script

• name – name of the evaluator

• encoding – encoding of input files

• language – language of hypotheses and references

• metric – evaluation metric “bleu”, “ter”, “meteor”

serialize_to_bytes(sentences: List[List[str]])→ bytes

86 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.evaluators.rouge module

neuralmonkey.evaluators.ter module

class neuralmonkey.evaluators.ter.TEREvaluator(name: str = ’TER’)→ None
Bases: object

Compute TER using the pyter library.

__init__(name: str = ’TER’)→ None
Initialize self. See help(type(self)) for accurate signature.

neuralmonkey.evaluators.wer module

class neuralmonkey.evaluators.wer.WEREvaluator(name: str = ’WER’)→ None
Bases: object

Compute WER (word error rate, used in speech recognition).

__init__(name: str = ’WER’)→ None
Initialize self. See help(type(self)) for accurate signature.

Module contents

neuralmonkey.runners package

Submodules

neuralmonkey.runners.base_runner module

class neuralmonkey.runners.base_runner.BaseRunner(output_series: str, decoder: MP)
→ None

Bases: typing.Generic

__init__(output_series: str, decoder: MP)→ None
Initialize self. See help(type(self)) for accurate signature.

decoder_data_id

get_executable(compute_losses: bool, summaries: bool, num_sessions: int) → neural-
monkey.runners.base_runner.Executable

loss_names

class neuralmonkey.runners.base_runner.Executable
Bases: object

collect_results(results: List[Dict])→ None

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

class neuralmonkey.runners.base_runner.ExecutionResult
Bases: neuralmonkey.runners.base_runner.ExecutionResult

A data structure that represents a result of a graph execution.

1.6. API Documentation 87

Neural Monkey Documentation, Release 0.1

The goal of each runner is to populate this structure and set it as its self.result.

outputs
A batch of outputs of the runner.

losses
A (possibly empty) list of loss values computed during the run.

scalar_summaries
A TensorFlow summary object with scalar values.

histogram_summaries
A TensorFlow summary object with histograms.

image_summaries
A TensorFlow summary object with images.

neuralmonkey.runners.base_runner.reduce_execution_results(execution_results:
List[neuralmonkey.runners.base_runner.ExecutionResult])
→ neural-
monkey.runners.base_runner.ExecutionResult

Aggregate execution results into one.

neuralmonkey.runners.beamsearch_runner module

class neuralmonkey.runners.beamsearch_runner.BeamSearchExecutable(rank: int,
all_coders:
Set[neuralmonkey.model.model_part.ModelPart],
num_sessions:
int, de-
coder:
neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder,
postpro-
cess:
Union[Callable,
None-
Type]) →
None

Bases: neuralmonkey.runners.base_runner.Executable

__init__(rank: int, all_coders: Set[neuralmonkey.model.model_part.ModelPart], num_sessions: int,
decoder: neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder, postprocess:
Union[Callable, NoneType])→ None

Initialize self. See help(type(self)) for accurate signature.

collect_results(results: List[Dict])→ None

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

prepare_results(output)

88 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

class neuralmonkey.runners.beamsearch_runner.BeamSearchRunner(output_series: str,
decoder: neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder,
rank: int =
1, postprocess:
Callable[[List[str]],
List[str]] =
None)→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

A runner which takes the output from a beam search decoder.

The runner and the beam search decoder support ensembling.

__init__(output_series: str, decoder: neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder,
rank: int = 1, postprocess: Callable[[List[str]], List[str]] = None)→ None

Initialize the beam search runner.

Parameters

• output_series – Name of the series produced by the runner.

• decoder – The beam search decoder to use.

• rank – The hypothesis from the beam to select. Setting rank to 1 selects the best hypoth-
esis.

• postprocess – The postprocessor to apply to the output data.

get_executable(compute_losses: bool = False, summaries: bool = True, num_sessions: int = 1)→
neuralmonkey.runners.beamsearch_runner.BeamSearchExecutable

loss_names

neuralmonkey.runners.beamsearch_runner.beam_search_runner_range(output_series:
str, decoder:
neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder,
max_rank: int
= None,
postprocess:
Callable[[List[str]],
List[str]] =
None) →
List[neuralmonkey.runners.beamsearch_runner.BeamSearchRunner]

Return beam search runners for a range of ranks from 1 to max_rank.

This means there is max_rank output series where the n-th series contains the n-th best hypothesis from the
beam search.

Parameters

• output_series – Prefix of output series.

• decoder – Beam search decoder shared by all runners.

• max_rank – Maximum rank of the hypotheses.

• postprocess – Series-level postprocess applied on output.

Returns List of beam search runners getting hypotheses with rank from 1 to max_rank.

1.6. API Documentation 89

Neural Monkey Documentation, Release 0.1

neuralmonkey.runners.label_runner module

class neuralmonkey.runners.label_runner.LabelRunExecutable(all_coders:
Set[neuralmonkey.model.model_part.ModelPart],
fetches:
Dict[tensorflow.python.framework.ops.Tensor,
Union[int, float,
numpy.ndarray]],
vocabulary: neural-
monkey.vocabulary.Vocabulary,
postprocess:
Union[Callable[[List[List[str]]],
List[List[str]]], None-
Type])→ None

Bases: neuralmonkey.runners.base_runner.Executable

__init__(all_coders: Set[neuralmonkey.model.model_part.ModelPart], fetches:
Dict[tensorflow.python.framework.ops.Tensor, Union[int, float, numpy.ndarray]], vocabu-
lary: neuralmonkey.vocabulary.Vocabulary, postprocess: Union[Callable[[List[List[str]]],
List[List[str]]], NoneType])→ None

Initialize self. See help(type(self)) for accurate signature.

collect_results(results: List[Dict])→ None

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.label_runner.LabelRunner(output_series: str,
decoder: neural-
monkey.decoders.sequence_labeler.SequenceLabeler,
postprocess:
Callable[[List[List[str]]],
List[List[str]]] = None) →
None

Bases: neuralmonkey.runners.base_runner.BaseRunner

__init__(output_series: str, decoder: neuralmonkey.decoders.sequence_labeler.SequenceLabeler,
postprocess: Callable[[List[List[str]]], List[List[str]]] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

get_executable(compute_losses: bool, summaries: bool, num_sessions: int) → neural-
monkey.runners.label_runner.LabelRunExecutable

loss_names

neuralmonkey.runners.logits_runner module

A runner outputing logits or normalized distriution from a decoder.

90 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

class neuralmonkey.runners.logits_runner.LogitsExecutable(all_coders:
Set[neuralmonkey.model.model_part.ModelPart],
fetches:
Dict[tensorflow.python.framework.ops.Tensor,
Union[int, float,
numpy.ndarray]],
vocabulary: neural-
monkey.vocabulary.Vocabulary,
normalize: bool,
pick_index: Union[int,
NoneType])→ None

Bases: neuralmonkey.runners.base_runner.Executable

__init__(all_coders: Set[neuralmonkey.model.model_part.ModelPart], fetches:
Dict[tensorflow.python.framework.ops.Tensor, Union[int, float, numpy.ndarray]], vo-
cabulary: neuralmonkey.vocabulary.Vocabulary, normalize: bool, pick_index: Union[int,
NoneType])→ None

Initialize self. See help(type(self)) for accurate signature.

collect_results(results: List[Dict])→ None

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.logits_runner.LogitsRunner(output_series: str,
decoder: neural-
monkey.decoders.classifier.Classifier,
normalize: bool = True,
pick_index: int = None,
pick_value: str = None) →
None

Bases: neuralmonkey.runners.base_runner.BaseRunner

A runner which takes the output from decoder.decoded_logits.

The logits / normalized probabilities are outputted as tab-separates string values. If the decoder produces a list
of logits (as the recurrent decoder), the tab separated arrays are separated with commas. Alternatively, we may
be interested in a single distribution dimension.

__init__(output_series: str, decoder: neuralmonkey.decoders.classifier.Classifier, normalize: bool =
True, pick_index: int = None, pick_value: str = None)→ None

Initialize the logits runner.

Parameters

• output_series – Name of the series produced by the runner.

• decoder – A decoder having logits.

• normalize – Flag whether the logits should be normalized with softmax.

• pick_index – If not None, it specifies the index of the logit or the probability that
should be on output.

• pick_value – If not None, it specifies a value from the decoder’s vocabulary whose
logit or probability should be on output.

get_executable(compute_losses: bool, summaries: bool, num_sessions: int) → neural-
monkey.runners.logits_runner.LogitsExecutable

loss_names

1.6. API Documentation 91

Neural Monkey Documentation, Release 0.1

neuralmonkey.runners.perplexity_runner module

class neuralmonkey.runners.perplexity_runner.PerplexityExecutable(all_coders:
Set[neuralmonkey.model.model_part.ModelPart],
xent_op:
tensor-
flow.python.framework.ops.Tensor)
→ None

Bases: neuralmonkey.runners.base_runner.Executable

__init__(all_coders: Set[neuralmonkey.model.model_part.ModelPart], xent_op: tensor-
flow.python.framework.ops.Tensor)→ None

Initialize self. See help(type(self)) for accurate signature.

collect_results(results: List[Dict])→ None

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.perplexity_runner.PerplexityRunner(output_series:
str, de-
coder: neural-
monkey.decoders.autoregressive.AutoregressiveDecoder)
→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

__init__(output_series: str, decoder: neuralmonkey.decoders.autoregressive.AutoregressiveDecoder)
→ None

Initialize self. See help(type(self)) for accurate signature.

get_executable(compute_losses: bool, summaries: bool, num_sessions: int) → neural-
monkey.runners.perplexity_runner.PerplexityExecutable

loss_names

neuralmonkey.runners.plain_runner module

class neuralmonkey.runners.plain_runner.PlainExecutable(all_coders:
Set[neuralmonkey.model.model_part.ModelPart],
fetches:
Dict[tensorflow.python.framework.ops.Tensor,
Union[int, float,
numpy.ndarray]],
num_sessions: int,
vocabulary: neural-
monkey.vocabulary.Vocabulary,
postprocess:
Union[Callable[[List[List[str]]],
List[List[str]]], None-
Type])→ None

Bases: neuralmonkey.runners.base_runner.Executable

__init__(all_coders: Set[neuralmonkey.model.model_part.ModelPart], fetches:
Dict[tensorflow.python.framework.ops.Tensor, Union[int, float, numpy.ndarray]],
num_sessions: int, vocabulary: neuralmonkey.vocabulary.Vocabulary, postprocess:
Union[Callable[[List[List[str]]], List[List[str]]], NoneType])→ None

Initialize self. See help(type(self)) for accurate signature.

92 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

collect_results(results: List[Dict])→ None

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.plain_runner.PlainRunner(output_series: str, decoder:
Union[neuralmonkey.decoders.autoregressive.AutoregressiveDecoder,
neural-
monkey.decoders.ctc_decoder.CTCDecoder,
neural-
monkey.decoders.classifier.Classifier,
neural-
monkey.decoders.sequence_labeler.SequenceLabeler],
postprocess:
Callable[[List[List[str]]],
List[List[str]]] = None) →
None

Bases: neuralmonkey.runners.base_runner.BaseRunner

A runner which takes the output from decoder.decoded.

__init__(output_series: str, decoder: Union[neuralmonkey.decoders.autoregressive.AutoregressiveDecoder,
neuralmonkey.decoders.ctc_decoder.CTCDecoder, neural-
monkey.decoders.classifier.Classifier, neuralmonkey.decoders.sequence_labeler.SequenceLabeler],
postprocess: Callable[[List[List[str]]], List[List[str]]] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

get_executable(compute_losses: bool, summaries: bool, num_sessions: int)

loss_names

neuralmonkey.runners.regression_runner module

class neuralmonkey.runners.regression_runner.RegressionRunExecutable(all_coders:
Set[neuralmonkey.model.model_part.ModelPart],
fetches:
Dict[str,
tensor-
flow.python.framework.ops.Tensor],
post-
pro-
cess:
Union[Callable[[List[float]],
List[float]],
None-
Type])
→
None

Bases: neuralmonkey.runners.base_runner.Executable

__init__(all_coders: Set[neuralmonkey.model.model_part.ModelPart], fetches: Dict[str, tensor-
flow.python.framework.ops.Tensor], postprocess: Union[Callable[[List[float]], List[float]],
NoneType])→ None

Initialize self. See help(type(self)) for accurate signature.

collect_results(results: List[Dict])→ None

1.6. API Documentation 93

Neural Monkey Documentation, Release 0.1

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.regression_runner.RegressionRunner(output_series: str,
decoder: neural-
monkey.decoders.sequence_regressor.SequenceRegressor,
postprocess:
Callable[[List[float]],
List[float]] =
None)→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

A runnner that takes the predictions of a sequence regressor.

__init__(output_series: str, decoder: neuralmonkey.decoders.sequence_regressor.SequenceRegressor,
postprocess: Callable[[List[float]], List[float]] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

get_executable(compute_losses: bool, summaries: bool, num_sessions: int) → neural-
monkey.runners.base_runner.Executable

loss_names

neuralmonkey.runners.runner module

class neuralmonkey.runners.runner.GreedyRunExecutable(all_coders:
Set[neuralmonkey.model.model_part.ModelPart],
fetches:
Dict[tensorflow.python.framework.ops.Tensor,
Union[int, float,
numpy.ndarray]], vo-
cabulary: neural-
monkey.vocabulary.Vocabulary,
postprocess:
Union[Callable[[List[List[str]]],
List[List[str]]], NoneType])
→ None

Bases: neuralmonkey.runners.base_runner.Executable

__init__(all_coders: Set[neuralmonkey.model.model_part.ModelPart], fetches:
Dict[tensorflow.python.framework.ops.Tensor, Union[int, float, numpy.ndarray]], vocabu-
lary: neuralmonkey.vocabulary.Vocabulary, postprocess: Union[Callable[[List[List[str]]],
List[List[str]]], NoneType])→ None

Initialize self. See help(type(self)) for accurate signature.

collect_results(results: List[Dict])→ None

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

Get the feedables and tensors to run.

class neuralmonkey.runners.runner.GreedyRunner(output_series: str, decoder:
Union[neuralmonkey.decoders.autoregressive.AutoregressiveDecoder,
neuralmonkey.decoders.classifier.Classifier],
postprocess: Callable[[List[List[str]]],
List[List[str]]] = None)→ None

94 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

Bases: neuralmonkey.runners.base_runner.BaseRunner

__init__(output_series: str, decoder: Union[neuralmonkey.decoders.autoregressive.AutoregressiveDecoder,
neuralmonkey.decoders.classifier.Classifier], postprocess: Callable[[List[List[str]]],
List[List[str]]] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

get_executable(compute_losses: bool, summaries: bool, num_sessions: int) → neural-
monkey.runners.runner.GreedyRunExecutable

loss_names

neuralmonkey.runners.tensor_runner module

class neuralmonkey.runners.tensor_runner.RepresentationRunner(output_series:
str, en-
coder: neural-
monkey.model.model_part.ModelPart,
attribute: str =
’output’, se-
lect_session: int
= None)→ None

Bases: neuralmonkey.runners.tensor_runner.TensorRunner

Runner printing out representation from an encoder.

Use this runner to get input / other data representation out from one of Neural Monkey encoders.

__init__(output_series: str, encoder: neuralmonkey.model.model_part.ModelPart, attribute: str =
’output’, select_session: int = None)→ None

Initialize the representation runner.

Parameters

• output_series – Name of the output series with vectors.

• encoder – The encoder to use. This can be any ModelPart object.

• attribute – The name of the encoder attribute that contains the data.

• used_session – Id of the TensorFlow session used in case of model ensembles.

class neuralmonkey.runners.tensor_runner.TensorExecutable(all_coders:
Set[neuralmonkey.model.model_part.ModelPart],
fetches:
Dict[tensorflow.python.framework.ops.Tensor,
Union[int, float,
numpy.ndarray]],
batch_dims: Dict[str,
int], select_session:
Union[int, NoneType],
single_tensor: bool)→
None

Bases: neuralmonkey.runners.base_runner.Executable

__init__(all_coders: Set[neuralmonkey.model.model_part.ModelPart], fetches:
Dict[tensorflow.python.framework.ops.Tensor, Union[int, float, numpy.ndarray]],
batch_dims: Dict[str, int], select_session: Union[int, NoneType], single_tensor: bool) →
None

Initialize self. See help(type(self)) for accurate signature.

collect_results(results: List[Dict])→ None

1.6. API Documentation 95

Neural Monkey Documentation, Release 0.1

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

class neuralmonkey.runners.tensor_runner.TensorRunner(output_series: str,
toplevel_modelpart: neural-
monkey.model.model_part.ModelPart,
toplevel_tensors:
List[tensorflow.python.framework.ops.Tensor],
tensors_by_name:
List[str], tensors_by_ref:
List[tensorflow.python.framework.ops.Tensor],
batch_dims_by_name:
List[int], batch_dims_by_ref:
List[int], select_session: int
= None, single_tensor: bool
= False)→ None

Bases: neuralmonkey.runners.base_runner.BaseRunner

Runner class for printing tensors from a model.

Use this runner if you want to retrieve a specific tensor from the model using a given dataset. The runner
generates an output data series which will contain the tensors in a dictionary of numpy arrays.

__init__(output_series: str, toplevel_modelpart: neuralmonkey.model.model_part.ModelPart,
toplevel_tensors: List[tensorflow.python.framework.ops.Tensor], tensors_by_name:
List[str], tensors_by_ref: List[tensorflow.python.framework.ops.Tensor],
batch_dims_by_name: List[int], batch_dims_by_ref: List[int], select_session: int =
None, single_tensor: bool = False)→ None

Construct a new TensorRunner object.

Note that at this time, one must specify the toplevel objects so that it is ensured that the graph is built.
The reason for this behavior is that the graph is constructed lazily and therefore if the tensors to store are
provided by indirect reference (name), the system does not know early enough that it needs to create them.

Parameters

• output_series – The name of the generated output data series.

• toplevel_modelpart – A ModelPart object that is used as the top-level compo-
nent of the model. This object should depend on values of all the wanted tensors.

• toplevel_tensors – A list of tensors that should be constructed. Use this when the
toplevel model part does not depend on this tensor. The tensors are constructed during
running this constructor method which prints them out.

• tensors_by_name – A list of tensor names to fetch. If a tensor is not in the graph, a
warning is generated and the tensor is ignored.

• tensors_by_ref – A list of tensor objects to fetch.

• batch_dims_by_name – A list of integers that correspond to the batch dimension in
each wanted tensor specified by name.

• batch_dims_by_ref – A list of integers that correspond to the batch dimension in
each wanted tensor specified by reference.

• select_session – An optional integer specifying the session to use in case of ensem-
bling. When not used, tensors from all sessions are stored. In case of a single session, this
option has no effect.

96 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• single_tensor – If True, it is assumed that only one tensor is to be fetched, and the
execution result will consist of this tensor only. If False, the result will be a dict mapping
tensor names to NumPy arrays.

get_executable(compute_losses: bool, summaries: bool, num_sessions: int) → neural-
monkey.runners.tensor_runner.TensorExecutable

loss_names

neuralmonkey.runners.word_alignment_runner module

class neuralmonkey.runners.word_alignment_runner.WordAlignmentRunner(output_series:
str,
atten-
tion:
neural-
monkey.attention.base_attention.BaseAttention,
de-
coder:
neural-
monkey.decoders.decoder.Decoder)
→
None

Bases: neuralmonkey.runners.base_runner.BaseRunner

__init__(output_series: str, attention: neuralmonkey.attention.base_attention.BaseAttention, de-
coder: neuralmonkey.decoders.decoder.Decoder)→ None

Initialize self. See help(type(self)) for accurate signature.

get_executable(compute_losses: bool = False, summaries: bool = True, num_sessions: int = 1)→
neuralmonkey.runners.word_alignment_runner.WordAlignmentRunnerExecutable

loss_names

class neuralmonkey.runners.word_alignment_runner.WordAlignmentRunnerExecutable(all_coders:
Set[neuralmonkey.model.model_part.ModelPart],
fetches:
Dict[tensorflow.python.framework.ops.Tensor,
Union[int,
float,
numpy.ndarray]])
→
None

Bases: neuralmonkey.runners.base_runner.Executable

__init__(all_coders: Set[neuralmonkey.model.model_part.ModelPart], fetches:
Dict[tensorflow.python.framework.ops.Tensor, Union[int, float, numpy.ndarray]]) →
None

Initialize self. See help(type(self)) for accurate signature.

collect_results(results: List[Dict])→ None

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

Get the feedables and tensors to run.

1.6. API Documentation 97

Neural Monkey Documentation, Release 0.1

Module contents

neuralmonkey.trainers package

Submodules

neuralmonkey.trainers.cross_entropy_trainer module

class neuralmonkey.trainers.cross_entropy_trainer.CrossEntropyTrainer(decoders:
List[Any],
de-
coder_weights:
List[Union[tensorflow.python.framework.ops.Tensor,
float,
None-
Type]]
=
None,
l1_weight:
float
= 0.0,
l2_weight:
float
= 0.0,
clip_norm:
float
=
None,
opti-
mizer:
ten-
sor-
flow.python.training.optimizer.Optimizer
=
None,
var_scopes:
List[str]
=
None,
var_collection:
str =
None)
→
None

Bases: neuralmonkey.trainers.generic_trainer.GenericTrainer

__init__(decoders: List[Any], decoder_weights: List[Union[tensorflow.python.framework.ops.Tensor,
float, NoneType]] = None, l1_weight: float = 0.0, l2_weight: float = 0.0, clip_norm: float
= None, optimizer: tensorflow.python.training.optimizer.Optimizer = None, var_scopes:
List[str] = None, var_collection: str = None)→ None

Initialize self. See help(type(self)) for accurate signature.

98 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

neuralmonkey.trainers.cross_entropy_trainer.xent_objective(decoder,
weight=None)
→ neural-
monkey.trainers.generic_trainer.Objective

Get XENT objective from decoder with cost.

neuralmonkey.trainers.generic_trainer module

class neuralmonkey.trainers.generic_trainer.GenericTrainer(objectives:
List[neuralmonkey.trainers.generic_trainer.Objective],
l1_weight: float = 0.0,
l2_weight: float
= 0.0, clip_norm:
float = None, op-
timizer: tensor-
flow.python.training.optimizer.Optimizer
= None, var_scopes:
List[str] = None,
var_collection: str =
None)→ None

Bases: object

__init__(objectives: List[neuralmonkey.trainers.generic_trainer.Objective], l1_weight: float
= 0.0, l2_weight: float = 0.0, clip_norm: float = None, optimizer: tensor-
flow.python.training.optimizer.Optimizer = None, var_scopes: List[str] = None,
var_collection: str = None)→ None

Initialize self. See help(type(self)) for accurate signature.

get_executable(compute_losses=True, summaries=True, num_sessions=1) → neural-
monkey.runners.base_runner.Executable

class neuralmonkey.trainers.generic_trainer.Objective
Bases: neuralmonkey.trainers.generic_trainer.Objective

The training objective.

name
The name for the objective. Used in TensorBoard.

decoder
The decoder which generates the value to optimize.

loss
The loss tensor fetched by the trainer.

gradients
Manually specified gradients. Useful for reinforcement learning.

weight
The weight of this objective. The loss will be multiplied by this so the gradients can be controled in case
of multiple objectives.

class neuralmonkey.trainers.generic_trainer.TrainExecutable(all_coders,
num_sessions,
train_op, losses,
scalar_summaries,
his-
togram_summaries)

Bases: neuralmonkey.runners.base_runner.Executable

1.6. API Documentation 99

Neural Monkey Documentation, Release 0.1

__init__(all_coders, num_sessions, train_op, losses, scalar_summaries, histogram_summaries)
Initialize self. See help(type(self)) for accurate signature.

collect_results(results: List[Dict])→ None

next_to_execute() → Tuple[Set[neuralmonkey.model.model_part.ModelPart], Union[Dict,
List], List[Dict[tensorflow.python.framework.ops.Tensor, Union[int, float,
numpy.ndarray]]]]

neuralmonkey.trainers.rl_trainer module

Training objectives for reinforcement learning.

neuralmonkey.trainers.rl_trainer.rl_objective(decoder: neural-
monkey.decoders.decoder.Decoder,
reward_function:
Callable[[numpy.ndarray,
numpy.ndarray], numpy.ndarray], sub-
tract_baseline: bool = False, normalize:
bool = False, temperature: float = 1.0,
ce_smoothing: float = 0.0, alpha: float
= 1.0, sample_size: int = 1) → neural-
monkey.trainers.generic_trainer.Objective

Construct RL objective for training with sentence-level feedback.

Depending on the options the objective corresponds to: 1) sample_size = 1, normalize = False, ce_smoothing =
0.0

Bandit objective (Eq. 2) described in ‘Bandit Structured Prediction for Neural Sequence-to-Sequence
Learning’ (http://www.aclweb.org/anthology/P17-1138) It’s recommended to set subtract_baseline =
True.

2. sample_size > 1, normalize = True, ce_smoothing = 0.0

Minimum Risk Training as described in ‘Minimum Risk Training for Neural Machine Translation’
(http://www.aclweb.org/anthology/P16-1159) (Eq. 12).

3. sample_size > 1, normalize = False, ce_smoothing = 0.0

The Google ‘Reinforce’ objective as proposed in ‘Google’s NMT System: Bridging the Gap between
Human and Machine Translation’ (https://arxiv.org/pdf/1609.08144.pdf) (Eq. 8).

4. sample_size > 1, normalize = False, ce_smoothing > 0.0

Google’s ‘Mixed’ objective in the above paper (Eq. 9), where ce_smoothing implements alpha.

Note that ‘alpha’ controls the sharpness of the normalized distribution, while ‘temperature’ controls the sharp-
ness during sampling.

Parameters

• decoder – a recurrent decoder to sample from

• reward_function – any evaluator object

• subtract_baseline – avg reward is subtracted from obtained reward

• normalize – the probabilities of the samples are re-normalized

100 Chapter 1. Getting Started

http://www.aclweb.org/anthology/P17-1138
http://www.aclweb.org/anthology/P16-1159
https://arxiv.org/pdf/1609.08144.pdf

Neural Monkey Documentation, Release 0.1

• sample_size – number of samples to obtain feedback for

• ce_smoothing – add cross-entropy loss with this coefficient to loss

• alpha – determines the shape of the normalized distribution

• temperature – the softmax temperature for sampling

Returns Objective object to be used in generic trainer

neuralmonkey.trainers.self_critical_objective module

Training objective for self-critical learning.

Self-critic learning is a modification of the REINFORCE algorithm that uses the reward of the train-time decoder
output as a baseline in the update step.

For more details see: https://arxiv.org/pdf/1612.00563.pdf

neuralmonkey.trainers.self_critical_objective.reinforce_score(reward: tensor-
flow.python.framework.ops.Tensor,
baseline: tensor-
flow.python.framework.ops.Tensor,
decoded: tensor-
flow.python.framework.ops.Tensor,
logits: tensor-
flow.python.framework.ops.Tensor)
→ tensor-
flow.python.framework.ops.Tensor

Cost function whose derivative is the REINFORCE equation.

This implements the primitive function to the central equation of the REINFORCE algorithm that estimates the
gradients of the loss with respect to decoder logits.

It uses the fact that the second term of the product (the difference of the word distribution and one hot vector of
the decoded word) is a derivative of negative log likelihood of the decoded word. The reward function and the
baseline are however treated as a constant, so they influence the derivate only multiplicatively.

neuralmonkey.trainers.self_critical_objective.self_critical_objective(decoder:
neu-
ral-
monkey.decoders.decoder.Decoder,
re-
ward_function:
Callable[[numpy.ndarray,
numpy.ndarray],
numpy.ndarray],
weight:
float
=
None)
→
neu-
ral-
monkey.trainers.generic_trainer.Objective

Self-critical objective.

Parameters

1.6. API Documentation 101

https://arxiv.org/pdf/1612.00563.pdf

Neural Monkey Documentation, Release 0.1

• decoder – A recurrent decoder.

• reward_function – A reward function computing score in Python.

• weight – Mixing weight for a trainer.

Returns Objective object to be used in generic trainer.

neuralmonkey.trainers.self_critical_objective.sentence_bleu(references:
numpy.ndarray,
hypotheses:
numpy.ndarray)
→ numpy.ndarray

Compute index-based sentence-level BLEU score.

Computes sentence level BLEU on indices outputed by the decoder, i.e. whatever the decoder uses as a unit is
used a token in the BLEU computation, ignoring the tokens may be sub-word units.

neuralmonkey.trainers.self_critical_objective.sentence_gleu(references:
numpy.ndarray,
hypotheses:
numpy.ndarray)
→ numpy.ndarray

Compute index-based GLEU score.

GLEU score is a sentence-level metric used in Google’s Neural MT as a reward in reinforcement learning
(https://arxiv.org/abs/1609.08144). It is a minimum of precision and recall on 1- to 4-grams.

It operates over the indices emitted by the decoder which are not necessarily tokens (could be characters or
subword units).

Module contents

Submodules

neuralmonkey.checking module

API checking module.

This module serves as a library of API checks used as assertions during constructing the computational graph.

exception neuralmonkey.checking.CheckingException
Bases: Exception

neuralmonkey.checking.assert_same_shape(tensor_a: tensor-
flow.python.framework.ops.Tensor, tensor_b:
tensorflow.python.framework.ops.Tensor)→ None

Check if two tensors have the same shape.

neuralmonkey.checking.assert_shape(tensor: tensorflow.python.framework.ops.Tensor, ex-
pected_shape: List[Union[int, NoneType]])→ None

Check shape of a tensor.

Parameters

• tensor – Tensor to be chcecked.

• expected_shape – Expected shape where None means the same as in TF and -1 means
not checking the dimension.

102 Chapter 1. Getting Started

https://arxiv.org/abs/1609.08144

Neural Monkey Documentation, Release 0.1

neuralmonkey.checking.check_dataset_and_coders(dataset: neural-
monkey.dataset.dataset.Dataset,
runners: Iter-
able[neuralmonkey.runners.base_runner.BaseRunner])
→ None

neuralmonkey.checkpython module

neuralmonkey.decorators module

neuralmonkey.decorators.tensor(func)

neuralmonkey.experiment module

Provides a high-level API for training and using a model.

class neuralmonkey.experiment.Experiment(config_path: str, train_mode: bool = False, over-
write_output_dir: bool = False, config_changes:
List[str] = None)→ None

Bases: object

__init__(config_path: str, train_mode: bool = False, overwrite_output_dir: bool = False, con-
fig_changes: List[str] = None)→ None

Initialize a Neural Monkey experiment.

Parameters

• config_path – The path to the experiment configuration file.

• train_mode – Indicates whether the model should be prepared for training.

• overwrite_output_dir – Indicates whether an existing experiment should be
reused. If True, this overrides the setting in the configuration file.

• config_changes – A list of modifications that will be made to the loaded configuration
file before parsing.

build_model()→ None

evaluate(dataset: neuralmonkey.dataset.dataset.Dataset, write_out: bool = False, batch_size: int =
None, log_progress: int = 0)→ Dict[str, Any]

Run the model on a given dataset and evaluate the outputs.

Parameters

• dataset – The dataset on which the model will be executed.

• write_out – Flag whether the outputs should be printed to a file defined in the dataset
object.

• batch_size – size of the minibatch

• log_progress – log progress every X seconds

Returns Dictionary of evaluation names and their values which includes the metrics applied on
respective series loss and loss values from the run.

classmethod get_current()→ neuralmonkey.experiment.Experiment
Return the experiment that is currently being built.

1.6. API Documentation 103

Neural Monkey Documentation, Release 0.1

get_initializer(var_name: str, default: Callable = None)→ Union[Callable, NoneType]
Return the initializer associated with the given variable name.

Calling the method marks the given initializer as used.

get_path(filename: str, cont_index: int = None)→ str
Return the path to the most recent version of the given file.

load_variables(variable_files: List[str] = None)→ None

model

run_model(dataset: neuralmonkey.dataset.dataset.Dataset, write_out: bool =
False, batch_size: int = None, log_progress: int = 0) → Tu-
ple[List[neuralmonkey.runners.base_runner.ExecutionResult], Dict[str, List[Any]]]

Run the model on a given dataset.

Parameters

• dataset – The dataset on which the model will be executed.

• write_out – Flag whether the outputs should be printed to a file defined in the dataset
object.

• batch_size – size of the minibatch

• log_progress – log progress every X seconds

Returns A list of ‘ExecutionResult‘s and a dictionary of the output series.

train()→ None

update_initializers(initializers: Iterable[Tuple[str, Callable]])→ None
Update the dictionary mapping variable names to initializers.

neuralmonkey.experiment.create_config(train_mode: bool = True) → neural-
monkey.config.configuration.Configuration

neuralmonkey.experiment.save_git_info(git_commit_file: str, git_diff_file: str, branch: str =
’HEAD’, repo_dir: str = None)→ None

neuralmonkey.experiment.visualize_embeddings(sequences: List[neuralmonkey.model.sequence.EmbeddedFactorSequence],
output_dir: str)→ None

neuralmonkey.functions module

Collection of various functions and function wrappers.

neuralmonkey.functions.inverse_sigmoid_decay(param, rate, min_value: float = 0.0,
max_value: float = 1.0, name: Union[str,
NoneType] = None, dtype=tf.float32) →
tensorflow.python.framework.ops.Tensor

Compute an inverse sigmoid decay: k/(k+exp(x/k)).

The result will be scaled to the range (min_value, max_value).

Parameters

• param – The parameter x from the formula.

• rate – Non-negative k from the formula.

neuralmonkey.functions.noam_decay(learning_rate: float, model_dimension: int, warmup_steps:
int)→ tensorflow.python.framework.ops.Tensor

Return decay function as defined in Vaswani et al., 2017, Equation 3.

104 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

https://arxiv.org/abs/1706.03762

lrate = (d_model)^-0.5 * min(step_num^-0.5, step_num * warmup_steps^-1.5)

Parameters

• model_dimension – Size of the hidden states of decoder and encoder

• warmup_steps – Number of warm-up steps

neuralmonkey.functions.piecewise_function(param, values, changepoints, name=None,
dtype=tf.float32)

Compute a piecewise function.

Parameters

• param – The function parameter.

• values – List of function values (numbers or tensors).

• changepoints – Sorted list of points where the function changes from one value to the
next. Must be one item shorter than values.

neuralmonkey.learning_utils module

neuralmonkey.learning_utils.evaluation(evaluators, dataset, runners, execution_results, re-
sult_data)

Evaluate the model outputs.

Parameters

• evaluators – List of tuples of series and evaluation functions.

• dataset – Dataset against which the evaluation is done.

• runners – List of runners (contains series ids and loss names).

• execution_results – Execution results that include the loss values.

• result_data – Dictionary from series names to list of outputs.

Returns Dictionary of evaluation names and their values which includes the metrics applied on
respective series loss and loss values from the run.

neuralmonkey.learning_utils.print_final_evaluation(name: str, eval_result: Dict[str,
float])→ None

Print final evaluation from a test dataset.

neuralmonkey.learning_utils.run_on_dataset(tf_manager: neural-
monkey.tf_manager.TensorFlowManager, run-
ners: List[neuralmonkey.runners.base_runner.BaseRunner],
dataset: neural-
monkey.dataset.dataset.Dataset, postpro-
cess: Union[List[Tuple[str, Callable]],
NoneType], write_out: bool = False,
batch_size: Union[int, NoneType] =
None, log_progress: int = 0) → Tu-
ple[List[neuralmonkey.runners.base_runner.ExecutionResult],
Dict[str, List[Any]]]

Apply the model on a dataset and optionally write outputs to files.

Parameters

• tf_manager – TensorFlow manager with initialized sessions.

1.6. API Documentation 105

https://arxiv.org/abs/1706.03762

Neural Monkey Documentation, Release 0.1

• runners – A function that runs the code

• dataset – The dataset on which the model will be executed.

• evaluators – List of evaluators that are used for the model evaluation if the target data
are provided.

• postprocess – an object to use as postprocessing of the

• write_out – Flag whether the outputs should be printed to a file defined in the dataset
object.

• batch_size – size of the minibatch

• log_progress – log progress every X seconds

• extra_fetches – Extra tensors to evaluate for each batch.

Returns Tuple of resulting sentences/numpy arrays, and evaluation results if they are available
which are dictionary function -> value.

neuralmonkey.learning_utils.training_loop(tf_manager: neural-
monkey.tf_manager.TensorFlowManager,
epochs: int, trainer: neural-
monkey.trainers.generic_trainer.GenericTrainer,
batch_size: int, log_directory: str,
evaluators: List[Union[Tuple[str,
Any], Tuple[str, str, Any]]], runners:
List[neuralmonkey.runners.base_runner.BaseRunner],
train_dataset: neural-
monkey.dataset.dataset.Dataset, val_dataset:
Union[neuralmonkey.dataset.dataset.Dataset,
List[neuralmonkey.dataset.dataset.Dataset]],
test_datasets: Union[List[neuralmonkey.dataset.dataset.Dataset],
NoneType] = None, logging_period: Union[str,
int] = 20, validation_period: Union[str, int] =
500, val_preview_input_series: Union[List[str],
NoneType] = None, val_preview_output_series:
Union[List[str], NoneType] = None,
val_preview_num_examples: int = 15,
train_start_offset: int = 0, runners_batch_size:
Union[int, NoneType] = None, ini-
tial_variables: Union[str, List[str], NoneType]
= None, postprocess: Union[List[Tuple[str,
Callable]], NoneType] = None)→ None

Execute the training loop for given graph and data.

Parameters

• tf_manager – TensorFlowManager with initialized sessions.

• epochs – Number of epochs for which the algoritm will learn.

• trainer – The trainer object containg the TensorFlow code for computing the loss and
optimization operation.

• batch_size – number of examples in one mini-batch

• log_directory – Directory where the TensordBoard log will be generated. If None,
nothing will be done.

106 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• evaluators – List of evaluators. The last evaluator is used as the main. An evaluator is
a tuple of the name of the generated series, the name of the dataset series the generated one
is evaluated with and the evaluation function. If only one series names is provided, it means
the generated and dataset series have the same name.

• runners – List of runners for logging and evaluation runs

• train_dataset – Dataset used for training

• val_dataset – used for validation. Can be Dataset or a list of datasets. The last dataset
is used as the main one for storing best results. When using multiple datasets. It is recom-
mended to name them for better Tensorboard visualization.

• test_datasets – List of datasets used for testing

• logging_period – after how many batches should the logging happen. It can also be
defined as a time period in format like: 3s; 4m; 6h; 1d; 3m15s; 3seconds; 4minutes; 6hours;
1days

• validation_period – after how many batches should the validation happen. It can
also be defined as a time period in same format as logging

• val_preview_input_series – which input series to preview in validation

• val_preview_output_series – which output series to preview in validation

• val_preview_num_examples – how many examples should be printed during valida-
tion

• train_start_offset – how many lines from the training dataset should be skipped.
The training starts from the next batch.

• runners_batch_size – batch size of runners. It is the same as batch_size if not speci-
fied

• initial_variables – variables used for initialization, for example for continuation
of training. Provide it with a path to your model directory and its checkpoint file group
common prefix, e.g. “variables.data”, or “variables.data.3” in case of multiple checkpoints
per experiment.

• postprocess – A function which takes the dataset with its output series and generates
additional series from them.

neuralmonkey.logging module

class neuralmonkey.logging.Logging
Bases: object

static debug(label: str = None)

debug_disabled_for = ['']

static debug_enabled()

debug_enabled_for = ['none']

static log(color: str = ’yellow’)→ None
Log a message with a colored timestamp.

log_file = None

static log_print()→ None
Print a string both to console and a log file is it is defined.

1.6. API Documentation 107

Neural Monkey Documentation, Release 0.1

static notice()→ None
Log a notice with a colored timestamp.

static print_header(path: str)→ None
Print the title of the experiment and a set of arguments it uses.

static set_log_file()→ None
Set up the file where the logging will be done.

strict_mode = ''

static warn()→ None
Log a warning.

neuralmonkey.logging.debug(message: str, label: str = None)

neuralmonkey.logging.debug_enabled(label: str = None)

neuralmonkey.logging.log(message: str, color: str = ’yellow’)→ None
Log a message with a colored timestamp.

neuralmonkey.logging.log_print(text: str)→ None
Print a string both to console and a log file is it is defined.

neuralmonkey.logging.notice(message: str)→ None
Log a notice with a colored timestamp.

neuralmonkey.logging.warn(message: str)→ None
Log a warning.

neuralmonkey.run module

neuralmonkey.run.load_runtime_config(config_path: str)→ argparse.Namespace
Load a runtime configuration file.

neuralmonkey.run.main()→ None

neuralmonkey.tf_manager module

TensorFlow Manager.

TensorFlow manager is a helper object in Neural Monkey which manages TensorFlow sessions, execution of the
computation graph, and saving and restoring of model variables.

class neuralmonkey.tf_manager.TensorFlowManager(num_sessions: int, num_threads: int,
save_n_best: int = 1, minimize_metric:
bool = False, variable_files:
Union[List[str], NoneType] = None,
gpu_allow_growth: bool = True,
per_process_gpu_memory_fraction:
float = 1.0, enable_tf_debug: bool =
False)→ None

Bases: object

Inteface between computational graph, data and TF sessions.

sessions
List of active Tensorflow sessions.

108 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

__init__(num_sessions: int, num_threads: int, save_n_best: int = 1, minimize_metric: bool =
False, variable_files: Union[List[str], NoneType] = None, gpu_allow_growth: bool = True,
per_process_gpu_memory_fraction: float = 1.0, enable_tf_debug: bool = False)→ None

Initialize a TensorflowManager.

At this moment the graph must already exist. This method initializes required number of TensorFlow
sessions and initializes them with provided variable files if they are provided.

Parameters

• num_sessions – Number of sessions to be initialized.

• num_threads – Number of threads sessions will run in.

• save_n_best – How many best models to keep

• minimize_metric – Whether the best model is the one with the lowest or the highest
score

• variable_files – List of variable files.

• gpu_allow_growth – TF to allocate incrementally, not all at once.

• per_process_gpu_memory_fraction – Limit TF memory use.

best_vars_file

execute(dataset: neuralmonkey.dataset.dataset.Dataset, execution_scripts, train=False, com-
pute_losses=True, summaries=True, batch_size=None, log_progress: int = 0) →
List[neuralmonkey.runners.base_runner.ExecutionResult]

init_saving(vars_prefix: str)→ None

initialize_model_parts(runners, save=False)→ None
Initialize model parts variables from their checkpoints.

restore(variable_files: Union[str, List[str]])→ None

restore_best_vars()→ None

save(variable_files: Union[str, List[str]])→ None

validation_hook(score: float, epoch: int, batch: int)→ None

neuralmonkey.tf_manager.get_default_tf_manager()

neuralmonkey.tf_utils module

A set of helper functions for TensorFlow.

neuralmonkey.tf_utils.append_tensor(tensor: tensorflow.python.framework.ops.Tensor, ap-
pendval: tensorflow.python.framework.ops.Tensor) →
tensorflow.python.framework.ops.Tensor

Append an N-D Tensor to an (N+1)-D Tensor.

Parameters

• tensor – The original Tensor

• appendval – The Tensor to add

Returns An (N+1)-D Tensor with appendval on the last position.

1.6. API Documentation 109

Neural Monkey Documentation, Release 0.1

neuralmonkey.tf_utils.gather_flat(x: tensorflow.python.framework.ops.Tensor, indices: tensor-
flow.python.framework.ops.Tensor, batch_size: Union[int,
tensorflow.python.framework.ops.Tensor] = 1, beam_size:
Union[int, tensorflow.python.framework.ops.Tensor] = 1)
→ tensorflow.python.framework.ops.Tensor

Gather values from the flattened (shape=[batch * beam, . . .]) input.

This function expects a flattened tensor with first dimension of size batch x beam elements. Using the given
batch and beam size, it reshapes the input tensor to a tensor of shape (batch, beam, ...) and gather the
values from it using the index tensor.

Parameters

• x – A flattened Tensor from which to gather values.

• indices – Index tensor.

• batch_size – The size of the batch.

• beam_size – The size of the beam.

Returns The Tensor of gathered values.

neuralmonkey.tf_utils.get_initializer(var_name: str, default: Callable = None) →
Union[Callable, NoneType]

Return the initializer associated with the given variable name.

The name of the current variable scope is prepended to the variable name.

This should only be called during model building.

neuralmonkey.tf_utils.get_shape_list(x: tensorflow.python.framework.ops.Tensor)
→ List[Union[int, tensor-
flow.python.framework.ops.Tensor]]

Return list of dims, statically where possible.

Compute the static shape of a tensor. Where the dimension is not static (e.g. batch or time dimension), symbolic
Tensor is returned.

Based on tensor2tensor.

Parameters x – The Tensor to process.

Returns A list of integers and Tensors.

neuralmonkey.tf_utils.get_state_shape_invariants(state: tensor-
flow.python.framework.ops.Tensor)
→ tensor-
flow.python.framework.tensor_shape.TensorShape

Return the shape invariant of a tensor.

This function computes the loosened shape invariant of a state tensor. Only invariant dimension is the state size
dimension, which is the last.

Based on tensor2tensor.

Parameters state – The state tensor.

Returns A TensorShape object with all but the last dimensions set to None.

neuralmonkey.tf_utils.get_variable(name: str, shape: List[int] = None, dtype: tensor-
flow.python.framework.dtypes.DType = None, ini-
tializer: Callable = None, **kwargs) → tensor-
flow.python.ops.variables.Variable

Get an existing variable with these parameters or create a new one.

110 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

This is a wrapper around tf.get_variable. The initializer parameter is treated as a default which can be overriden
by a call to update_initializers.

This should only be called during model building.

neuralmonkey.tf_utils.layer_norm(x: tensorflow.python.framework.ops.Tensor, epsilon: float =
1e-06)→ tensorflow.python.framework.ops.Tensor

Layer normalize the tensor x, averaging over the last dimension.

Implementation based on tensor2tensor.

Parameters

• x – The Tensor to normalize.

• epsilon – The smoothing parameter of the normalization.

Returns The normalized tensor.

neuralmonkey.tf_utils.partial_transpose(x: tensorflow.python.framework.ops.Tensor,
indices: List[int]) → tensor-
flow.python.framework.ops.Tensor

Do a transpose on a subset of tensor dimensions.

Compute a permutation of first k dimensions of a tensor.

Parameters

• x – The Tensor to transpose.

• indices – The permutation of the first k dimensions of x.

Returns The transposed tensor.

neuralmonkey.tf_utils.tf_print(tensor: tensorflow.python.framework.ops.Tensor, mes-
sage: str = None, debug_label: str = None) → tensor-
flow.python.framework.ops.Tensor

Print the value of a tensor to the debug log.

Better than tf.Print, logs to console only when the “tensorval” debug subject is turned on.

Idea found at: https://stackoverflow.com/a/39649614

Parameters tensor – The tensor whose value to print

Returns As tf.Print, this function returns a tensor identical to the input tensor, with the printing
side-effect added.

neuralmonkey.tf_utils.update_initializers(initializers: Iterable[Tuple[str, Callable]]) →
None

neuralmonkey.train module

Training script for sequence to sequence learning.

neuralmonkey.train.main()→ None

neuralmonkey.vocabulary module

Vocabulary class module.

This module implements the Vocabulary class and the helper functions that can be used to obtain a Vocabulary instance.

1.6. API Documentation 111

https://stackoverflow.com/a/39649614

Neural Monkey Documentation, Release 0.1

class neuralmonkey.vocabulary.Vocabulary(tokenized_text: List[str] = None,
unk_sample_prob: float = 0.0)→ None

Bases: collections.abc.Sized

__init__(tokenized_text: List[str] = None, unk_sample_prob: float = 0.0)→ None
Create a new instance of a vocabulary.

Parameters tokenized_text – The initial list of words to add.

add_characters(word: str)→ None

add_tokenized_text(tokenized_text: List[str])→ None
Add words from a list to the vocabulary.

Parameters tokenized_text – The list of words to add.

add_word(word: str, occurences: int = 1)→ None
Add a word to the vocablulary.

Parameters

• word – The word to add. If it’s already there, increment the count.

• occurences – increment the count of word by the number of occurences

get_unk_sampled_word_index(word)
Return index of the specified word with sampling of unknown words.

This method returns the index of the specified word in the vocabulary. If the frequency of the word
in the vocabulary is 1 (the word was only seen once in the whole training dataset), with probability of
self.unk_sample_prob, generate the index of the unknown token instead.

Parameters word – The word to look up.

Returns Index of the word, index of the unknown token if sampled, or index of the unknown
token if the word is not present in the vocabulary.

get_word_index(word: str)→ int
Return index of the specified word.

Parameters word – The word to look up.

Returns Index of the word or index of the unknown token if the word is not present in the
vocabulary.

log_sample(size: int = 5)→ None
Log a sample of the vocabulary.

Parameters size – How many sample words to log.

save_wordlist(path: str, overwrite: bool = False, save_frequencies: bool = False, encoding: str =
’utf-8’)→ None

Save the vocabulary as a wordlist.

The file is ordered by the ids of words. This function is used mainly for embedding visualization.

Parameters

• path – The path to save the file to.

• overwrite – Flag whether to overwrite existing file. Defaults to False.

• save_frequencies – flag if frequencies should be stored. This parameter adds header
into the output file.

Raises

112 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

• FileExistsError if the file exists and overwrite flag is

• disabled.

sentences_to_tensor(sentences: List[List[str]], max_len: int = None, pad_to_max_len: bool
= True, train_mode: bool = False, add_start_symbol: bool = False,
add_end_symbol: bool = False)→ Tuple[numpy.ndarray, numpy.ndarray]

Generate the tensor representation for the provided sentences.

Parameters

• sentences – List of sentences as lists of tokens.

• max_len – If specified, all sentences will be truncated to this length.

• pad_to_max_len – If True, the tensor will be padded to max_len, even if all of the
sentences are shorter. If False, the shape of the tensor will be determined by the maximum
length of the sentences in the batch.

• train_mode – Flag whether we are training or not (enables/disables unk sampling).

• add_start_symbol – If True, the <s> token will be added to the beginning of each
sentence vector. Enabling this option extends the maximum length by one.

• add_end_symbol – If True, the </s> token will be added to the end of each sentence
vector, provided that the sentence is shorter than max_len. If not, the end token is not
added. Unlike add_start_symbol, enabling this option does not alter the maximum length.

Returns

A tuple of a sentence tensor and a padding weight vector.

The shape of the tensor representing the sentences is either (batch_max_len, batch_size) or
(batch_max_len+1, batch_size), depending on the value of the add_start_symbol argument.
batch_max_len is the length of the longest sentence in the batch (including the optional </s>
token), limited by max_len (if specified).

The shape of the padding vector is the same as of the sentence vector.

truncate(size: int)→ None
Truncate the vocabulary to the requested size.

The infrequent tokens are discarded.

Parameters size – The final size of the vocabulary

truncate_by_min_freq(min_freq: int)→ None
Truncate the vocabulary only keeping words with a minimum frequency.

Parameters min_freq – The minimum frequency of included words.

vectors_to_sentences(vectors: Union[List[numpy.ndarray], numpy.ndarray])→ List[List[str]]
Convert vectors of indexes of vocabulary items to lists of words.

Parameters vectors – List of vectors of vocabulary indices.

Returns List of lists of words.

neuralmonkey.vocabulary.from_dataset(datasets: List[neuralmonkey.dataset.dataset.Dataset],
series_ids: List[str], max_size: int, save_file: str =
None, overwrite: bool = False, min_freq: Union[int,
NoneType] = None, unk_sample_prob: float = 0.5) →
neuralmonkey.vocabulary.Vocabulary

Load a vocabulary from a dataset with an option to save it.

Parameters

1.6. API Documentation 113

Neural Monkey Documentation, Release 0.1

• datasets – A list of datasets from which to create the vocabulary

• series_ids – A list of ids of series of the datasets that should be used producing the
vocabulary

• max_size – The maximum size of the vocabulary

• save_file – A file to save the vocabulary to. If None (default), the vocabulary will not
be saved.

• overwrite – Overwrite existing file.

• min_freq – Do not include words with frequency smaller than this.

• unk_sample_prob – The probability with which to sample unks out of words with fre-
quency 1. Defaults to 0.5.

Returns The new Vocabulary instance.

neuralmonkey.vocabulary.from_file(*args, **kwargs)→ neuralmonkey.vocabulary.Vocabulary

neuralmonkey.vocabulary.from_nematus_json(path: str, max_size: int = None,
pad_to_max_size: bool = False) → neu-
ralmonkey.vocabulary.Vocabulary

Load vocabulary from Nematus JSON format.

The JSON format is a flat dictionary that maps words to their index in the vocabulary.

Parameters

• path – Path to the file.

• max_size – Maximum vocabulary size including ‘unk’ and ‘eos’ symbols, but not includ-
ing <pad> and <s> symbol.

• pad_to_max_size – If specified, the vocabulary is padded with dummy symbols up to
the specified maximum size.

neuralmonkey.vocabulary.from_t2t_vocabulary(path: str, encoding: str = ’utf-8’)→ neural-
monkey.vocabulary.Vocabulary

Load a vocabulary generated during tensor2tensor training.

Parameters

• path – The path to the vocabulary file.

• encoding – The encoding of the vocabulary file (defaults to UTF-8).

Returns The new Vocabulary instantce.

neuralmonkey.vocabulary.from_wordlist(path: str, encoding: str = ’utf-8’, contains_header:
bool = True, contains_frequencies: bool = True) →
neuralmonkey.vocabulary.Vocabulary

Load a vocabulary from a wordlist.

The file can contain either list of words with no header. Or it can contain words and their counts separated by
tab and a header on the first line.

Parameters

• path – The path to the wordlist file

• encoding – The encoding of the wordlist file (defaults to UTF-8)

• contains_header – if the file have a header on first line

• contains_frequencies – if the file contains frequencies in second column

114 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

Returns The new Vocabulary instance.

neuralmonkey.vocabulary.initialize_vocabulary(directory: str, name: str, datasets:
List[neuralmonkey.dataset.dataset.Dataset]
= None, series_ids: List[str] = None,
max_size: int = None) → neural-
monkey.vocabulary.Vocabulary

Initialize a vocabulary.

This function is supposed to initialize vocabulary when called from the configuration file. It first checks whether
the vocabulary is already loaded on the provided path and if not, it tries to generate it from the provided dataset.

Parameters

• directory – Directory where the vocabulary should be stored.

• name – Name of the vocabulary which is also the name of the file it is stored it.

• datasets – A a list of datasets from which the vocabulary can be created.

• series_ids – A list of ids of series of the datasets that should be used for producing the
vocabulary.

• max_size – The maximum size of the vocabulary

Returns The new vocabulary

Module contents

The neuralmonkey package is the root package of this project.

1.7 Visualization

1.7.1 LogBook

Neural Monkey LogBook is a simple web application for preview the outputs of the experiments in the browser.

The experiment data are stored in a directory structure, where each experiment directory contains the experiment
configuration, state of the git repository, the experiment was executed with, detailed log of the computation and other
files necessary to execute the model that has been trained.

LogBook is meant as a complement to using TensorBoard, whose summaries are stored in the same directory structure.

How to run it

You can run the server using the following command:

bin/neuralmonkey-logbook --logdir=<experiments> --port=<port> --host=<host>

where <experiments> is the directory where the experiments are listed and <port> is the number of the port the server
will run on, and <host> is the IP address of the host (defaults to 127.0.0.1, if you want the logbook to be visible to
other computers in the network, set the host to 0.0.0.0)

Then you can navigate in your browser to http://localhost:<port> to view the experiment logs.

1.7. Visualization 115

Neural Monkey Documentation, Release 0.1

1.7.2 TensorBoard

You can use TensorBoard <https://www.tensorflow.org/versions/r0.9/how_tos/summaries_and_tensorboard/index.html>
to visualize your TensorFlow graph, see summaries of quantitative metrics about the execution of your graph, and
show additional data like images that pass through it.

You can start it by following command:

tensorboard --logdir=<experiments>

And then you can navigate in your browser to http://localhost:6006/ (or if the TensorBoard assigns different port) and
view all the summaries about your experiment.

How to read TensorBoard

The step in the TensorBoard is describing how many inputs (not batches) was processed.

1.7.3 Attention Visualization

If you are using an attention decoder, visualization of the soft alignment of each sentence in the first validation batch
will appear in the Images tab in TensorBoard. The images might look like this:

Here, the source sentence is on the vertical axis and the target sentence on the horizontal axis. The size of each image
is max_output_len * max_input_len so most of the time, there will be some blank rows at the bottom and
some trailing columns with “phantom” attention (corresponding to positions after the end of the output sentence).

You can use the tf_save_images.py script to save the whole history of images as a sequence of PNG files:

116 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

For the first sentence in the batch
scripts/tf_save_images.py events.out attention_0/image/0 --prefix images/attention_0_

Use feh to view the images as a time-lapse:

feh -g 300x300 -Z --force-aliasing --slideshow-delay 0.2 images/attention_0_*.png

Or enlarge them and turn them into an animated GIF using:

convert images/attention_0_*.png -scale 300x300 images/attention_0.gif

1.8 Advanced Features

1.8.1 Byte Pair Encoding

This is explained in the machine translation tutorial.

1.8.2 Dropout

Neural networks with a large number of parameters have a serious problem with an overfitting. Dropout is a technique
for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. But during the test time, the dropout is turned
off. More information in https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

If you want to enable dropout on an encoder or on the decoder, you can simply add dropout_keep_prob to the particular
section:

[encoder]
class=encoders.recurrent.SentenceEncoder
dropout_keep_prob=0.8
...

or:

[decoder]
class=decoders.decoder.Decoder
dropout_keep_prob=0.8
...

1.8.3 Pervasive Dropout

Detailed information in https://arxiv.org/abs/1512.05287

If you want allow dropout on the recurrent layer of your encoder, you can add use_pervasive_dropout parameter into
it and then the dropout probability will be used:

[encoder]
class=encoders.recurrent.SentenceEncoder
dropout_keep_prob=0.8
use_pervasive_dropout=True
...

1.8. Advanced Features 117

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://arxiv.org/abs/1512.05287

Neural Monkey Documentation, Release 0.1

1.8.4 Attention Seeded by GIZA++ Word Alignments

todo: OC to reference the paper and describe how to use this in NM

1.9 Use SGE cluster array job for inference

To speed up the inference, the neuralmonkey-run binary provides the --grid option, which can be used when
running the program as a SGE array job.

The run script make use of the SGE_TASK_ID and SGE_TASK_STEPSIZE environment variables that are set in
each computing node of the array job. If the --grid option is supplied and these variables are present, it runs the
inference only on a subset of the dataset, specified by the variables.

Consider this example test_data.ini:

[main]
test_datasets=[<dataset>]
variables=["path/to/variables.data"]

[dataset]
class=dataset.load_dataset_from_files
s_source="data/source.en"
s_target_out="out/target.de"

If we want to run a model configured in model.ini on this dataset, we can do:

neuralmonkey-run model.ini test_data.ini

And the program executes the model on the dataset loaded from data/source.en and stores the results in out/
target.de.

If the source file is large or if you use a slow inference method (such as beam search), you may want to split the source
file into smaller parts and execute the model on all of them in parallel. If you have access to a SGE cluster, you don’t
have to do it manually - just create an array job and supply the --grid option to the program. Now, suppose that the
source file contains 100,000 sentences and you want to split it to 100 parts and run it on cluster. To accomplish this,
just run:

qsub <qsub_options> -t 1-100000:1000 -b y \
"neuralmonkey-run --grid model.ini test_data.ini"

This will submit 100 jobs to your cluster. Each job will use its SGE_TASK_ID and SGE_TASK_STEPSIZE param-
eters to determine its part of the data to process. It then runs the inference only on the subset of the dataset and stores
the result in a suffixed file.

For example, if the SGE_TASK_ID is 3, the SGE_TASK_STEPSIZE is 100, and the --grid option is specified,
the inference will be run on lines 201 to 300 of the file data/source.en and the output will be written to out/
target.de.0000000200.

After all the jobs are finished, you just need to manually run:

cat out/target.de.* > out/target.de

and delete the intermediate files. (Careful when your file has more than 10^10 lines - you need to concatenate the
intermediate files in the right order!)

118 Chapter 1. Getting Started

Neural Monkey Documentation, Release 0.1

1.10 GPU Benchmarks

We have done some benchmarks on our department to find out differences between GPUs and we have decided to
shared them here. Therefore they do not test speed of Neural Monkey, but they test different GPU cards with the same
setup in Neural Monkey.

The benchmark test consisted of one epoch of Machine Translation training in Neural Monkey on a set of fixed data.
The size of the model nicely fit into the 2GB memory, therefore GPUs with more memory could have better results
with bigger models in comparison to CPUs. All GPUs have CUDA8.0

Setup (cc=cuda capability) Running time
GeForce GTX 1080; cc6.1 9:55:58
GeForce GTX 1080; cc6.1 10:19:40
GeForce GTX 1080; cc6.1 12:34:34
GeForce GTX 1080; cc6.1 13:01:05
GeForce GTX Titan Z; cc3.5 16:05:24
Tesla K40c; cc3.5 22:41:01
Tesla K40c; cc3.5 22:43:10
Tesla K40c; cc3.5 24:19:45
16 cores Intel Xeon Sandy Bridge 2012 CPU 46:33:14
16 cores Intel Xeon Sandy Bridge 2012 CPU 52:36:56
Quadro K2000; cc3.0 59:47:58
8 cores Intel Xeon Sandy Bridge 2012 CPU 60:39:17
GeForce GT 630; cc3.0 103:42:30
8 cores Intel Xeon Westmere 2010 CPU 134:41:22

1.11 Development Guidelines

1.11.1 Github Workflow

This is a brief document about the Neural Monkey development workflow. Its primary aim is to describe the envi-
ronment around the Github repository (e.g. continuous integration tests, documentation), pull requests, code-review,
etc.

This document is written chronologically, from the point of view of a contributor.

Creating an issue

Everytime there is a need to change the codebase, the contributor should create a corresponing issue in the Github
repository.

The name of the issue should be comprehensive, and should summarize the issue in less than 10 words. In the issue
description, all the relevant information should be mentioned, and, if applicable, a sketch of the solution should be
given so the fashion and method of the solution can be subject to further discussion.

Labels

There is a number of label tags to use to provide an easier way to orient among the issues. Here is an explanation
of some of them, so they are not used incorrectly (notably, there is a slight difference between “enhancement” and
“feature”).

1.10. GPU Benchmarks 119

https://github.com/ufal/neuralmonkey

Neural Monkey Documentation, Release 0.1

• bug: Use when there is something wrong in the current codebase that needs to be fixed. For example, “Random
seeds are not working”

• documentation: Use when the main topic of the issue or pull request is to contribute to the documentation (be it
a rst document or a request for more docstrings)

• tests: Similarly to documentation, use if the main topic of the issue is to write a test or to do changes to the
testing process itself.

• feature: A request for implementing a feature regarding the training of the models or the models themselves,
e.g. “Minimum risk training” or “Implementation of conditional GRU”.

• enhancement: A request for implementing a feature to Neural Monkey aimed at improving the user experience
with the package, e.g. “GPU profiling” or “Logging of config building”.

• help wanted: Used as an additional label, which specify that solving the issue is suitable either for new con-
tributors or for researchers who want to try out a feature, which would be otherwise implemented after a longer
time.

• refactor: Refactor issues are requests for cleaning the codebase, using better ways to achieve the same results,
conforming to a future API, etc. For example, “Rewrite decoder using decorators”

Todo: Replace text with label pictures from Github

Selecting an issue to work on and assigning people

Note: If you want to start working on something and don’t have a preference, check out the issues labeled “Help
wanted”

When you decide to work on an issue, assign yourself to it and describe your plans on how you will proceed (in case
there is no solution sketch provided in the issue description). This way, others may comment on your plans prior to
the work, which can save a lot of time.

Please make sure that you put all additional information as a comment to the issue in case the issue has been discussed
elsewhere.

Creating a branch

Prior to writing code (or at least before the first commit), you should create a branch for solution of the issue. This
command creates a new branch called your_branch_name and switches your working copy to that branch:

$ git checkout -b your_branch_name

Writing code

On the new branch, you can make changes and commit, until your solution is done.

It is worth noting that we are trying to keep our code clean by enforcing some code writing rules and guidelines. These
are automatically check by Travis CI on each push to the Github repository. Here is a list of tools used to check the
quality of the code:

• pylint

• pycodestyle

120 Chapter 1. Getting Started

https://www.pylint.org
http://pypi.python.org/pypi/pycodestyle

Neural Monkey Documentation, Release 0.1

• mypy

• markdownlint

Todo: provide short description to the tools, check that markdownlint has correct URL

You can run the tests on your local machine by using scripts (and requirements) from the tests/ directory of this
package,

This is a usual mantra that you can use for committing and pushing to the remote branch in the repository:

$ git add .
$ git commit -m 'your commit message'
$ git push origin your_branch_name

Note: If you are working on a branch with someone else, it is always a good idea to do a git pull --rebase
before pushing. This command updates your branch with remote changes and apply your new commits on top of them.

Warning: If your commit message contains the string [ci skip] the continuous integration tests are not run.
However, try not to use this feature unless you know what you’re doing.

Creating a pull request

Whenever you want to add a feature or push a bugfix, you should make a new pull request, which can be reviewed and
merged by someone else. The typical workflow should be as follows:

1. Create a new branch, make your changes and push them to the repository.

2. You should now see the new branch on the Github project page. When you open the branch page, click on
“Create Pull request” button.

3. When the pull request is created, the continuous integration tests are run on Travis. You can see the status of
the test run on the pull request page. There is also a link to Travis so you can inspect the results of the test run,
and make additional changes in order to make the tests successful, if needed. Additionally to the code quality
checking tools, unit and regression tests are run as well.

When you create a pull request, assign one or two people to do the review.

Code review and merging

Your pull requests should always be subject to code review. After you create the pull request, select one or two
contributors and assign them to make a review.

This phase consists of discussion about the introduced changes, suggestions, and another requirements made by the
reviewers. Anyone who wants to do a review can contribute, the reviewer roles are not considered exclusive.

After all of the reviewers’ comments have been addressed and the reviewers approved the pull request, the pull request
can be merged. It is usually a good idea to rebase the code to the recent version of master. Assuming your working
copy is switched to the master branch, do:

$ git pull --rebase
$ git checkout your_branch_name
$ git rebase master

1.11. Development Guidelines 121

http://mypy-lang.org
https://github.com/mivok/markdownlint

Neural Monkey Documentation, Release 0.1

These commands first update your local copy of master from the remote repository, then switch your working copy to
the your_branch_name branch, and then rebases the branch on the updated master.

Rebasing is a process in which commits from a branch (your_branch_name) are applied on a second branch
(master), and the new HEAD is marked as the first branch.

Warning: Rebasing is a process which overwrites history. Therefore be absolutely sure that you know what are
you doing. Usually if you work on a branch alone, rebasing is a safe procedure.

When the branch is rebased, you have to force-push it to the repository:

$ git push -f origin your_branch_name

This command overwrites the your branch in the remote repository with your local branch (which is now rebased on
master, and therefore, up-to-date)

Note: You can use rebasing also for updating your branch to work with newer versions of master instead of merging
the master in the branch. Bear in mind though, that you should force-push these updates, so no-one works on the
outdated version of the branch.

Finally, one more round of tests is run and if everything is OK, you can click the “Merge pull request” button, which
executes the merge. You can also click another button to delete the your_branch_name branch from the repository
after the merge.

Documentation

Documentation related to GitHub is written in Markdown files, Python documentation using reStructuredText. This
concerns both the standalone documents (in /docs/) and the docstrings in source code.

Style of the Markdown files is automatically checked using Markdownlint.

1.11.2 Running tests

Every time a commit is pushed to the Github repository, the tests are run on Travis CI.

If you want to run the tests locally, install the required tools:

(nm)$ pip install --upgrade -r <(cat tests/*_requirements.txt)

Test scripts

Test scripts located in the tests directory:

• tests_run.sh runs training with small dataset and small.ini configuration

• unit-tests_run.sh runs unit tests

• lint_run.sh runs pylint

• mypy_run.sh runs mypy

All the scripts should be run from the main directory of the repository. There is also run_tests.sh in the main directory,
that runs all the tests above.

122 Chapter 1. Getting Started

https://daringfireball.net/projects/markdown/
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
https://github.com/mivok/markdownlint
https://github.com/ufal/neuralmonkey
https://travis-ci.org/ufal/neuralmonkey

Python Module Index

n
neuralmonkey, 115
neuralmonkey.attention, 36
neuralmonkey.attention.base_attention,

21
neuralmonkey.attention.combination, 24
neuralmonkey.attention.coverage, 27
neuralmonkey.attention.feed_forward, 27
neuralmonkey.attention.namedtuples, 28
neuralmonkey.attention.scaled_dot_product,

29
neuralmonkey.attention.stateful_context,

35
neuralmonkey.checking, 102
neuralmonkey.checkpython, 103
neuralmonkey.dataset, 40
neuralmonkey.dataset.dataset, 36
neuralmonkey.dataset.helpers, 38
neuralmonkey.dataset.lazy_dataset, 39
neuralmonkey.decoders, 61
neuralmonkey.decoders.autoregressive,

40
neuralmonkey.decoders.beam_search_decoder,

44
neuralmonkey.decoders.classifier, 48
neuralmonkey.decoders.ctc_decoder, 49
neuralmonkey.decoders.decoder, 50
neuralmonkey.decoders.encoder_projection,

52
neuralmonkey.decoders.output_projection,

53
neuralmonkey.decoders.sequence_labeler,

56
neuralmonkey.decoders.sequence_regressor,

57
neuralmonkey.decoders.transformer, 57
neuralmonkey.decoders.word_alignment_decoder,

60
neuralmonkey.decorators, 103

neuralmonkey.encoders, 82
neuralmonkey.encoders.attentive, 61
neuralmonkey.encoders.cnn_encoder, 62
neuralmonkey.encoders.facebook_conv, 64
neuralmonkey.encoders.imagenet_encoder,

65
neuralmonkey.encoders.numpy_stateful_filler,

67
neuralmonkey.encoders.pooling, 69
neuralmonkey.encoders.raw_rnn_encoder,

70
neuralmonkey.encoders.recurrent, 71
neuralmonkey.encoders.sentence_cnn_encoder,

75
neuralmonkey.encoders.sequence_cnn_encoder,

77
neuralmonkey.encoders.transformer, 79
neuralmonkey.evaluators.accuracy, 82
neuralmonkey.evaluators.average, 82
neuralmonkey.evaluators.beer, 83
neuralmonkey.evaluators.bleu, 83
neuralmonkey.evaluators.chrf, 84
neuralmonkey.evaluators.edit_distance,

85
neuralmonkey.evaluators.f1_bio, 85
neuralmonkey.evaluators.gleu, 85
neuralmonkey.evaluators.mse, 86
neuralmonkey.evaluators.multeval, 86
neuralmonkey.evaluators.ter, 87
neuralmonkey.evaluators.wer, 87
neuralmonkey.experiment, 103
neuralmonkey.functions, 104
neuralmonkey.learning_utils, 105
neuralmonkey.logging, 107
neuralmonkey.run, 108
neuralmonkey.runners, 98
neuralmonkey.runners.base_runner, 87
neuralmonkey.runners.beamsearch_runner,

88
neuralmonkey.runners.label_runner, 90

123

Neural Monkey Documentation, Release 0.1

neuralmonkey.runners.logits_runner, 90
neuralmonkey.runners.perplexity_runner,

92
neuralmonkey.runners.plain_runner, 92
neuralmonkey.runners.regression_runner,

93
neuralmonkey.runners.runner, 94
neuralmonkey.runners.tensor_runner, 95
neuralmonkey.runners.word_alignment_runner,

97
neuralmonkey.tf_manager, 108
neuralmonkey.tf_utils, 109
neuralmonkey.train, 111
neuralmonkey.trainers, 102
neuralmonkey.trainers.cross_entropy_trainer,

98
neuralmonkey.trainers.generic_trainer,

99
neuralmonkey.trainers.rl_trainer, 100
neuralmonkey.trainers.self_critical_objective,

101
neuralmonkey.vocabulary, 111

124 Python Module Index

Index

Symbols
__init__() (neuralmonkey.attention.base_attention.BaseAttention

method), 22
__init__() (neuralmonkey.attention.combination.FlatMultiAttention

method), 24
__init__() (neuralmonkey.attention.combination.HierarchicalMultiAttention

method), 26
__init__() (neuralmonkey.attention.combination.MultiAttention

method), 26
__init__() (neuralmonkey.attention.coverage.CoverageAttention

method), 27
__init__() (neuralmonkey.attention.feed_forward.Attention

method), 27
__init__() (neuralmonkey.attention.scaled_dot_product.MultiHeadAttention

method), 30
__init__() (neuralmonkey.attention.scaled_dot_product.ScaledDotProdAttention

method), 32
__init__() (neuralmonkey.attention.stateful_context.StatefulContext

method), 35
__init__() (neuralmonkey.dataset.dataset.Dataset

method), 37
__init__() (neuralmonkey.dataset.lazy_dataset.LazyDataset

method), 39
__init__() (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder

method), 41
__init__() (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder

method), 45
__init__() (neuralmonkey.decoders.classifier.Classifier

method), 48
__init__() (neuralmonkey.decoders.ctc_decoder.CTCDecoder

method), 49
__init__() (neuralmonkey.decoders.decoder.Decoder

method), 50
__init__() (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

method), 56
__init__() (neuralmonkey.decoders.sequence_regressor.SequenceRegressor

method), 57
__init__() (neuralmonkey.decoders.transformer.TransformerDecoder

method), 58

__init__() (neuralmonkey.decoders.word_alignment_decoder.WordAlignmentDecoder
method), 60

__init__() (neuralmonkey.encoders.attentive.AttentiveEncoder
method), 61

__init__() (neuralmonkey.encoders.cnn_encoder.CNNEncoder
method), 62

__init__() (neuralmonkey.encoders.cnn_encoder.CNNTemporalView
method), 63

__init__() (neuralmonkey.encoders.facebook_conv.SentenceEncoder
method), 65

__init__() (neuralmonkey.encoders.imagenet_encoder.ImageNet
method), 66

__init__() (neuralmonkey.encoders.numpy_stateful_filler.SpatialFiller
method), 67

__init__() (neuralmonkey.encoders.numpy_stateful_filler.StatefulFiller
method), 68

__init__() (neuralmonkey.encoders.pooling.SequencePooling
method), 69

__init__() (neuralmonkey.encoders.raw_rnn_encoder.RawRNNEncoder
method), 70

__init__() (neuralmonkey.encoders.recurrent.DeepSentenceEncoder
method), 71

__init__() (neuralmonkey.encoders.recurrent.FactoredEncoder
method), 72

__init__() (neuralmonkey.encoders.recurrent.RecurrentEncoder
method), 73

__init__() (neuralmonkey.encoders.recurrent.SentenceEncoder
method), 74

__init__() (neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
method), 76

__init__() (neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder
method), 78

__init__() (neuralmonkey.encoders.transformer.TransformerEncoder
method), 80

__init__() (neuralmonkey.encoders.transformer.TransformerLayer
method), 81

__init__() (neuralmonkey.evaluators.accuracy.AccuracyEvaluator
method), 82

__init__() (neuralmonkey.evaluators.accuracy.AccuracySeqLevelEvaluator
method), 82

125

Neural Monkey Documentation, Release 0.1

__init__() (neuralmonkey.evaluators.average.AverageEvaluator
method), 82

__init__() (neuralmonkey.evaluators.beer.BeerWrapper
method), 83

__init__() (neuralmonkey.evaluators.bleu.BLEUEvaluator
method), 83

__init__() (neuralmonkey.evaluators.chrf.ChrFEvaluator
method), 85

__init__() (neuralmonkey.evaluators.edit_distance.EditDistanceEvaluator
method), 85

__init__() (neuralmonkey.evaluators.f1_bio.F1Evaluator
method), 85

__init__() (neuralmonkey.evaluators.gleu.GLEUEvaluator
method), 85

__init__() (neuralmonkey.evaluators.mse.MeanSquaredErrorEvaluator
method), 86

__init__() (neuralmonkey.evaluators.multeval.MultEvalWrapper
method), 86

__init__() (neuralmonkey.evaluators.ter.TEREvaluator
method), 87

__init__() (neuralmonkey.evaluators.wer.WEREvaluator
method), 87

__init__() (neuralmonkey.experiment.Experiment
method), 103

__init__() (neuralmonkey.runners.base_runner.BaseRunner
method), 87

__init__() (neuralmonkey.runners.beamsearch_runner.BeamSearchExecutable
method), 88

__init__() (neuralmonkey.runners.beamsearch_runner.BeamSearchRunner
method), 89

__init__() (neuralmonkey.runners.label_runner.LabelRunExecutable
method), 90

__init__() (neuralmonkey.runners.label_runner.LabelRunner
method), 90

__init__() (neuralmonkey.runners.logits_runner.LogitsExecutable
method), 91

__init__() (neuralmonkey.runners.logits_runner.LogitsRunner
method), 91

__init__() (neuralmonkey.runners.perplexity_runner.PerplexityExecutable
method), 92

__init__() (neuralmonkey.runners.perplexity_runner.PerplexityRunner
method), 92

__init__() (neuralmonkey.runners.plain_runner.PlainExecutable
method), 92

__init__() (neuralmonkey.runners.plain_runner.PlainRunner
method), 93

__init__() (neuralmonkey.runners.regression_runner.RegressionRunExecutable
method), 93

__init__() (neuralmonkey.runners.regression_runner.RegressionRunner
method), 94

__init__() (neuralmonkey.runners.runner.GreedyRunExecutable
method), 94

__init__() (neuralmonkey.runners.runner.GreedyRunner
method), 95

__init__() (neuralmonkey.runners.tensor_runner.RepresentationRunner
method), 95

__init__() (neuralmonkey.runners.tensor_runner.TensorExecutable
method), 95

__init__() (neuralmonkey.runners.tensor_runner.TensorRunner
method), 96

__init__() (neuralmonkey.runners.word_alignment_runner.WordAlignmentRunner
method), 97

__init__() (neuralmonkey.runners.word_alignment_runner.WordAlignmentRunnerExecutable
method), 97

__init__() (neuralmonkey.tf_manager.TensorFlowManager
method), 108

__init__() (neuralmonkey.trainers.cross_entropy_trainer.CrossEntropyTrainer
method), 98

__init__() (neuralmonkey.trainers.generic_trainer.GenericTrainer
method), 99

__init__() (neuralmonkey.trainers.generic_trainer.TrainExecutable
method), 99

__init__() (neuralmonkey.vocabulary.Vocabulary
method), 112

A
AccuracyEvaluator (class in neural-

monkey.evaluators.accuracy), 82
AccuracySeqLevelEvaluator (class in neural-

monkey.evaluators.accuracy), 82
add_characters() (neuralmonkey.vocabulary.Vocabulary

method), 112
add_lazy_series() (neural-

monkey.dataset.lazy_dataset.LazyDataset
method), 39

add_series() (neuralmonkey.dataset.dataset.Dataset
method), 37

add_series() (neuralmonkey.dataset.lazy_dataset.LazyDataset
method), 39

add_tokenized_text() (neural-
monkey.vocabulary.Vocabulary method),
112

add_word() (neuralmonkey.vocabulary.Vocabulary
method), 112

alignment_target (neural-
monkey.decoders.word_alignment_decoder.WordAlignmentDecoder
attribute), 60

append_tensor() (in module neuralmonkey.tf_utils), 109
apply_net (neuralmonkey.encoders.imagenet_encoder.ImageNetSpec

attribute), 66
assert_same_shape() (in module neural-

monkey.checking), 102
assert_shape() (in module neuralmonkey.checking), 102
Attention (class in neural-

monkey.attention.feed_forward), 27
attention() (in module neural-

monkey.attention.scaled_dot_product), 32

126 Index

Neural Monkey Documentation, Release 0.1

attention() (neuralmonkey.attention.base_attention.BaseAttention
method), 22

attention() (neuralmonkey.attention.combination.FlatMultiAttention
method), 25

attention() (neuralmonkey.attention.combination.HierarchicalMultiAttention
method), 26

attention() (neuralmonkey.attention.combination.MultiAttention
method), 26

attention() (neuralmonkey.attention.feed_forward.Attention
method), 27

attention() (neuralmonkey.attention.scaled_dot_product.MultiHeadAttention
method), 30

attention() (neuralmonkey.attention.stateful_context.StatefulContext
method), 35

attention_histories (neural-
monkey.decoders.decoder.RNNHistories
attribute), 52

attention_loop_states (neural-
monkey.decoders.beam_search_decoder.BeamSearchOutput
attribute), 47

attention_mask (neural-
monkey.attention.feed_forward.Attention
attribute), 28

attention_mask (neural-
monkey.attention.stateful_context.StatefulContext
attribute), 36

attention_states (neural-
monkey.attention.feed_forward.Attention
attribute), 28

attention_states (neural-
monkey.attention.stateful_context.StatefulContext
attribute), 36

attention_weights (neural-
monkey.encoders.attentive.AttentiveEncoder
attribute), 61

AttentionLoopState (class in neural-
monkey.attention.namedtuples), 28

AttentiveEncoder (class in neural-
monkey.encoders.attentive), 61

attn_size (neuralmonkey.attention.combination.MultiAttention
attribute), 26

AutoregressiveDecoder (class in neural-
monkey.decoders.autoregressive), 40

AverageEvaluator (class in neural-
monkey.evaluators.average), 82

B
BaseAttention (class in neural-

monkey.attention.base_attention), 22
BaseRunner (class in neural-

monkey.runners.base_runner), 87
batch_dataset() (neuralmonkey.dataset.dataset.Dataset

method), 37

batch_norm_callback() (neural-
monkey.encoders.cnn_encoder.CNNEncoder
method), 62

batch_serie() (neuralmonkey.dataset.dataset.Dataset
method), 37

beam_search_runner_range() (in module neural-
monkey.runners.beamsearch_runner), 89

BeamSearchDecoder (class in neural-
monkey.decoders.beam_search_decoder),
44

BeamSearchExecutable (class in neural-
monkey.runners.beamsearch_runner), 88

BeamSearchLoopState (class in neural-
monkey.decoders.beam_search_decoder),
46

BeamSearchOutput (class in neural-
monkey.decoders.beam_search_decoder),
47

BeamSearchRunner (class in neural-
monkey.runners.beamsearch_runner), 88

BeerWrapper (class in neuralmonkey.evaluators.beer), 83
best_vars_file (neuralmonkey.tf_manager.TensorFlowManager

attribute), 109
bias_term (neuralmonkey.attention.feed_forward.Attention

attribute), 28
bidirectional_rnn (neural-

monkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 77

bleu() (neuralmonkey.evaluators.bleu.BLEUEvaluator
static method), 83

BLEUEvaluator (class in neuralmonkey.evaluators.bleu),
83

build_model() (neuralmonkey.experiment.Experiment
method), 103

C
cell_type (neuralmonkey.encoders.recurrent.RNNSpec

attribute), 73
check_dataset_and_coders() (in module neural-

monkey.checking), 102
CheckingException, 102
child_loop_states (neural-

monkey.attention.namedtuples.HierarchicalLoopState
attribute), 29

ChrFEvaluator (class in neuralmonkey.evaluators.chrf),
84

chunk2set() (neuralmonkey.evaluators.f1_bio.F1Evaluator
static method), 85

Classifier (class in neuralmonkey.decoders.classifier), 48
cnn_encoded (neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder

attribute), 77
CNNEncoder (class in neural-

monkey.encoders.cnn_encoder), 62

Index 127

Neural Monkey Documentation, Release 0.1

CNNTemporalView (class in neural-
monkey.encoders.cnn_encoder), 63

collect_results() (neural-
monkey.runners.base_runner.Executable
method), 87

collect_results() (neural-
monkey.runners.beamsearch_runner.BeamSearchExecutable
method), 88

collect_results() (neural-
monkey.runners.label_runner.LabelRunExecutable
method), 90

collect_results() (neural-
monkey.runners.logits_runner.LogitsExecutable
method), 91

collect_results() (neural-
monkey.runners.perplexity_runner.PerplexityExecutable
method), 92

collect_results() (neural-
monkey.runners.plain_runner.PlainExecutable
method), 93

collect_results() (neural-
monkey.runners.regression_runner.RegressionRunExecutable
method), 93

collect_results() (neural-
monkey.runners.runner.GreedyRunExecutable
method), 94

collect_results() (neural-
monkey.runners.tensor_runner.TensorExecutable
method), 95

collect_results() (neural-
monkey.runners.word_alignment_runner.WordAlignmentRunnerExecutable
method), 97

collect_results() (neural-
monkey.trainers.generic_trainer.TrainExecutable
method), 100

compare_scores() (neural-
monkey.evaluators.accuracy.AccuracyEvaluator
static method), 82

compare_scores() (neural-
monkey.evaluators.accuracy.AccuracySeqLevelEvaluator
static method), 82

compare_scores() (neural-
monkey.evaluators.bleu.BLEUEvaluator
static method), 83

compare_scores() (neural-
monkey.evaluators.edit_distance.EditDistanceEvaluator
static method), 85

compare_scores() (neural-
monkey.evaluators.mse.MeanSquaredErrorEvaluator
static method), 86

concat_encoder_projection() (in module neural-
monkey.decoders.encoder_projection), 53

constants (neuralmonkey.decoders.autoregressive.LoopState
attribute), 44

context_vector_size (neural-
monkey.attention.base_attention.BaseAttention
attribute), 22

context_vector_size (neural-
monkey.attention.combination.FlatMultiAttention
attribute), 25

context_vector_size (neural-
monkey.attention.combination.HierarchicalMultiAttention
attribute), 26

context_vector_size (neural-
monkey.attention.feed_forward.Attention
attribute), 28

context_vector_size (neural-
monkey.attention.scaled_dot_product.MultiHeadAttention
attribute), 31

context_vector_size (neural-
monkey.attention.stateful_context.StatefulContext
attribute), 36

contexts (neuralmonkey.attention.namedtuples.AttentionLoopState
attribute), 28

contexts (neuralmonkey.attention.namedtuples.MultiHeadLoopState
attribute), 29

cost (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 42

cost (neuralmonkey.decoders.classifier.Classifier at-
tribute), 48

cost (neuralmonkey.decoders.ctc_decoder.CTCDecoder
attribute), 49

cost (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
attribute), 56

cost (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 57

cost (neuralmonkey.decoders.word_alignment_decoder.WordAlignmentDecoder
attribute), 60

CoverageAttention (class in neural-
monkey.attention.coverage), 27

create_config() (in module neuralmonkey.experiment),
104

cross_attention_sublayer() (neural-
monkey.encoders.transformer.TransformerEncoder
method), 81

CrossEntropyTrainer (class in neural-
monkey.trainers.cross_entropy_trainer), 98

CTCDecoder (class in neural-
monkey.decoders.ctc_decoder), 49

D
Dataset (class in neuralmonkey.dataset.dataset), 36
debug() (in module neuralmonkey.logging), 108
debug() (neuralmonkey.logging.Logging static method),

107
debug_disabled_for (neuralmonkey.logging.Logging at-

tribute), 107
debug_enabled() (in module neuralmonkey.logging), 108

128 Index

Neural Monkey Documentation, Release 0.1

debug_enabled() (neuralmonkey.logging.Logging static
method), 107

debug_enabled_for (neuralmonkey.logging.Logging at-
tribute), 107

decoded (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 42

decoded (neuralmonkey.decoders.classifier.Classifier at-
tribute), 48

decoded (neuralmonkey.decoders.ctc_decoder.CTCDecoder
attribute), 49

decoded (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
attribute), 56

decoded (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 57

decoded_logits (neural-
monkey.decoders.classifier.Classifier attribute),
48

decoded_seq (neuralmonkey.decoders.classifier.Classifier
attribute), 48

decoded_symbols (neural-
monkey.decoders.transformer.TransformerHistories
attribute), 59

Decoder (class in neuralmonkey.decoders.decoder), 50
decoder (neuralmonkey.trainers.generic_trainer.Objective

attribute), 99
decoder_data_id (neural-

monkey.runners.base_runner.BaseRunner
attribute), 87

decoder_loop_state (neural-
monkey.decoders.beam_search_decoder.BeamSearchLoopState
attribute), 46

decoder_outputs (neural-
monkey.decoders.autoregressive.DecoderHistories
attribute), 44

decoder_state (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder
attribute), 45

DecoderConstants (class in neural-
monkey.decoders.autoregressive), 43

DecoderFeedables (class in neural-
monkey.decoders.autoregressive), 43

DecoderHistories (class in neural-
monkey.decoders.autoregressive), 43

decoding_b (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 42

decoding_b (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
attribute), 56

decoding_loop() (neural-
monkey.decoders.autoregressive.AutoregressiveDecoder
method), 42

decoding_loop() (neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder
method), 45

decoding_residual_w (neural-
monkey.decoders.sequence_labeler.SequenceLabeler

attribute), 56
decoding_w (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder

attribute), 42
decoding_w (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

attribute), 56
deduplicate_sentences() (neural-

monkey.evaluators.bleu.BLEUEvaluator
static method), 83

DeepSentenceEncoder (class in neural-
monkey.encoders.recurrent), 71

direction (neuralmonkey.encoders.recurrent.RNNSpec at-
tribute), 73

E
EditDistanceEvaluator (class in neural-

monkey.evaluators.edit_distance), 85
effective_reference_length() (neural-

monkey.evaluators.bleu.BLEUEvaluator
static method), 84

embed_input_symbol() (neural-
monkey.decoders.decoder.Decoder method),
51

embed_inputs() (neural-
monkey.decoders.transformer.TransformerDecoder
method), 59

embedded_inputs (neural-
monkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder
attribute), 79

embedded_train_inputs (neural-
monkey.decoders.transformer.TransformerDecoder
attribute), 59

embedding_matrix (neural-
monkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 42

empty_attention_loop_state() (in module neural-
monkey.attention.base_attention), 23

empty_initial_state() (in module neural-
monkey.decoders.encoder_projection), 53

empty_multi_head_loop_state() (in module neural-
monkey.attention.scaled_dot_product), 33

encoder_attention_sublayer() (neural-
monkey.decoders.transformer.TransformerDecoder
method), 59

encoder_inputs (neural-
monkey.encoders.transformer.TransformerEncoder
attribute), 81

evaluate() (neuralmonkey.experiment.Experiment
method), 103

evaluation() (in module neuralmonkey.learning_utils),
105

Executable (class in neuralmonkey.runners.base_runner),
87

execute() (neuralmonkey.tf_manager.TensorFlowManager
method), 109

Index 129

Neural Monkey Documentation, Release 0.1

ExecutionResult (class in neural-
monkey.runners.base_runner), 87

expand_to_beam() (neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder
method), 45

Experiment (class in neuralmonkey.experiment), 103

F
f1_score() (neuralmonkey.evaluators.f1_bio.F1Evaluator

static method), 85
F1Evaluator (class in neuralmonkey.evaluators.f1_bio),

85
FactoredEncoder (class in neural-

monkey.encoders.recurrent), 72
feed_dict() (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder

method), 42
feed_dict() (neuralmonkey.decoders.classifier.Classifier

method), 48
feed_dict() (neuralmonkey.decoders.ctc_decoder.CTCDecoder

method), 49
feed_dict() (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

method), 56
feed_dict() (neuralmonkey.decoders.sequence_regressor.SequenceRegressor

method), 57
feed_dict() (neuralmonkey.decoders.word_alignment_decoder.WordAlignmentDecoder

method), 60
feed_dict() (neuralmonkey.encoders.cnn_encoder.CNNEncoder

method), 63
feed_dict() (neuralmonkey.encoders.imagenet_encoder.ImageNet

method), 66
feed_dict() (neuralmonkey.encoders.numpy_stateful_filler.SpatialFiller

method), 67
feed_dict() (neuralmonkey.encoders.numpy_stateful_filler.StatefulFiller

method), 68
feed_dict() (neuralmonkey.encoders.raw_rnn_encoder.RawRNNEncoder

method), 70
feed_dict() (neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder

method), 79
feedables (neuralmonkey.decoders.autoregressive.LoopState

attribute), 44
feedforward_sublayer() (neural-

monkey.decoders.transformer.TransformerDecoder
method), 59

feedforward_sublayer() (neural-
monkey.encoders.transformer.TransformerEncoder
method), 81

finalize_loop() (neural-
monkey.attention.base_attention.BaseAttention
method), 22

finalize_loop() (neural-
monkey.attention.combination.FlatMultiAttention
method), 25

finalize_loop() (neural-
monkey.attention.combination.HierarchicalMultiAttention

method), 26
finalize_loop() (neural-

monkey.attention.feed_forward.Attention
method), 28

finalize_loop() (neural-
monkey.attention.scaled_dot_product.MultiHeadAttention
method), 31

finalize_loop() (neural-
monkey.attention.stateful_context.StatefulContext
method), 36

finalize_loop() (neural-
monkey.decoders.autoregressive.AutoregressiveDecoder
method), 42

finalize_loop() (neuralmonkey.decoders.decoder.Decoder
method), 51

finished (neuralmonkey.decoders.autoregressive.DecoderFeedables
attribute), 43

finished (neuralmonkey.decoders.beam_search_decoder.SearchState
attribute), 47

FlatMultiAttention (class in neural-
monkey.attention.combination), 24

from_dataset() (in module neuralmonkey.vocabulary),
113

from_file() (in module neuralmonkey.vocabulary), 114
from_files() (in module neuralmonkey.dataset.helpers),

38
from_nematus_json() (in module neural-

monkey.vocabulary), 114
from_t2t_vocabulary() (in module neural-

monkey.vocabulary), 114
from_wordlist() (in module neuralmonkey.vocabulary),

114

G
gather_flat() (in module neuralmonkey.tf_utils), 109
GenericTrainer (class in neural-

monkey.trainers.generic_trainer), 99
get_alexnet() (in module neural-

monkey.encoders.imagenet_encoder), 67
get_attention_mask() (in module neural-

monkey.attention.base_attention), 23
get_attention_states() (in module neural-

monkey.attention.base_attention), 23
get_body() (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder

method), 42
get_body() (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder

method), 45
get_body() (neuralmonkey.decoders.decoder.Decoder

method), 52
get_body() (neuralmonkey.decoders.transformer.TransformerDecoder

method), 59
get_current() (neuralmonkey.experiment.Experiment

class method), 103

130 Index

Neural Monkey Documentation, Release 0.1

get_default_tf_manager() (in module neural-
monkey.tf_manager), 109

get_dependencies() (neural-
monkey.encoders.attentive.AttentiveEncoder
method), 61

get_dependencies() (neural-
monkey.encoders.cnn_encoder.CNNTemporalView
method), 63

get_dependencies() (neural-
monkey.encoders.pooling.SequencePooling
method), 69

get_dependencies() (neural-
monkey.encoders.recurrent.RecurrentEncoder
method), 74

get_dependencies() (neural-
monkey.encoders.transformer.TransformerEncoder
method), 81

get_encoder_projections() (neural-
monkey.attention.combination.FlatMultiAttention
method), 25

get_energies() (neuralmonkey.attention.coverage.CoverageAttention
method), 27

get_energies() (neuralmonkey.attention.feed_forward.Attention
method), 28

get_executable() (neural-
monkey.runners.base_runner.BaseRunner
method), 87

get_executable() (neural-
monkey.runners.beamsearch_runner.BeamSearchRunner
method), 89

get_executable() (neural-
monkey.runners.label_runner.LabelRunner
method), 90

get_executable() (neural-
monkey.runners.logits_runner.LogitsRunner
method), 91

get_executable() (neural-
monkey.runners.perplexity_runner.PerplexityRunner
method), 92

get_executable() (neural-
monkey.runners.plain_runner.PlainRunner
method), 93

get_executable() (neural-
monkey.runners.regression_runner.RegressionRunner
method), 94

get_executable() (neural-
monkey.runners.runner.GreedyRunner
method), 95

get_executable() (neural-
monkey.runners.tensor_runner.TensorRunner
method), 97

get_executable() (neural-
monkey.runners.word_alignment_runner.WordAlignmentRunner
method), 97

get_executable() (neural-
monkey.trainers.generic_trainer.GenericTrainer
method), 99

get_initial_loop_state() (neural-
monkey.decoders.autoregressive.AutoregressiveDecoder
method), 42

get_initial_loop_state() (neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder
method), 45

get_initial_loop_state() (neural-
monkey.decoders.decoder.Decoder method),
52

get_initial_loop_state() (neural-
monkey.decoders.transformer.TransformerDecoder
method), 59

get_initializer() (in module neuralmonkey.tf_utils), 110
get_initializer() (neuralmonkey.experiment.Experiment

method), 103
get_logits() (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder

method), 42
get_path() (neuralmonkey.experiment.Experiment

method), 104
get_resnet_by_type() (in module neural-

monkey.encoders.imagenet_encoder), 67
get_series() (neuralmonkey.dataset.dataset.Dataset

method), 37
get_series() (neuralmonkey.dataset.lazy_dataset.LazyDataset

method), 39
get_shape_list() (in module neuralmonkey.tf_utils), 110
get_state_shape_invariants() (in module neural-

monkey.tf_utils), 110
get_unk_sampled_word_index() (neural-

monkey.vocabulary.Vocabulary method),
112

get_variable() (in module neuralmonkey.tf_utils), 110
get_vgg_by_type() (in module neural-

monkey.encoders.imagenet_encoder), 67
get_word_index() (neuralmonkey.vocabulary.Vocabulary

method), 112
gleu() (neuralmonkey.evaluators.gleu.GLEUEvaluator

static method), 85
GLEUEvaluator (class in neuralmonkey.evaluators.gleu),

85
gradients (neuralmonkey.trainers.generic_trainer.Objective

attribute), 99
GreedyRunExecutable (class in neural-

monkey.runners.runner), 94
GreedyRunner (class in neuralmonkey.runners.runner),

94

H
has_series() (neuralmonkey.dataset.dataset.Dataset

method), 37

Index 131

Neural Monkey Documentation, Release 0.1

has_series() (neuralmonkey.dataset.lazy_dataset.LazyDataset
method), 39

head_weights (neuralmonkey.attention.namedtuples.MultiHeadLoopState
attribute), 29

hidden_features (neural-
monkey.attention.feed_forward.Attention
attribute), 28

HierarchicalLoopState (class in neural-
monkey.attention.namedtuples), 28

HierarchicalMultiAttention (class in neural-
monkey.attention.combination), 25

highway_layer (neural-
monkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 77

histogram_summaries (neural-
monkey.runners.base_runner.ExecutionResult
attribute), 88

histories (neuralmonkey.attention.base_attention.BaseAttention
attribute), 22

histories (neuralmonkey.decoders.autoregressive.LoopState
attribute), 44

I
image_input (neuralmonkey.encoders.cnn_encoder.CNNEncoder

attribute), 63
image_mask (neuralmonkey.encoders.cnn_encoder.CNNEncoder

attribute), 63
image_processing_layers (neural-

monkey.encoders.cnn_encoder.CNNEncoder
attribute), 63

image_size (neuralmonkey.encoders.imagenet_encoder.ImageNetSpec
attribute), 66

image_summaries (neural-
monkey.runners.base_runner.ExecutionResult
attribute), 88

ImageNet (class in neural-
monkey.encoders.imagenet_encoder), 65

ImageNetSpec (class in neural-
monkey.encoders.imagenet_encoder), 66

init_saving() (neuralmonkey.tf_manager.TensorFlowManager
method), 109

initial_loop_state() (neural-
monkey.attention.base_attention.BaseAttention
method), 22

initial_loop_state() (neural-
monkey.attention.combination.FlatMultiAttention
method), 25

initial_loop_state() (neural-
monkey.attention.combination.HierarchicalMultiAttention
method), 26

initial_loop_state() (neural-
monkey.attention.feed_forward.Attention
method), 28

initial_loop_state() (neural-
monkey.attention.scaled_dot_product.MultiHeadAttention
method), 31

initial_loop_state() (neural-
monkey.attention.stateful_context.StatefulContext
method), 36

initial_state (neuralmonkey.decoders.decoder.Decoder at-
tribute), 52

initialize_model_parts() (neural-
monkey.tf_manager.TensorFlowManager
method), 109

initialize_vocabulary() (in module neural-
monkey.vocabulary), 115

input_image (neuralmonkey.encoders.imagenet_encoder.ImageNet
attribute), 66

input_mask (neuralmonkey.decoders.transformer.TransformerHistories
attribute), 59

input_plus_attention() (neural-
monkey.decoders.decoder.Decoder method),
52

input_symbol (neuralmonkey.decoders.autoregressive.DecoderFeedables
attribute), 43

inverse_sigmoid_decay() (in module neural-
monkey.functions), 104

K
key_projection_matrix (neural-

monkey.attention.feed_forward.Attention
attribute), 28

L
LabelRunExecutable (class in neural-

monkey.runners.label_runner), 90
LabelRunner (class in neural-

monkey.runners.label_runner), 90
last_dec_loop_state (neural-

monkey.decoders.beam_search_decoder.BeamSearchOutput
attribute), 47

last_search_state (neural-
monkey.decoders.beam_search_decoder.BeamSearchOutput
attribute), 47

last_search_step_output (neural-
monkey.decoders.beam_search_decoder.BeamSearchOutput
attribute), 47

layer() (neuralmonkey.decoders.transformer.TransformerDecoder
method), 59

layer() (neuralmonkey.encoders.transformer.TransformerEncoder
method), 81

layer_norm() (in module neuralmonkey.tf_utils), 111
LazyDataset (class in neural-

monkey.dataset.lazy_dataset), 39
lengths (neuralmonkey.decoders.beam_search_decoder.SearchState

attribute), 47

132 Index

Neural Monkey Documentation, Release 0.1

linear_encoder_projection() (in module neural-
monkey.decoders.encoder_projection), 53

load_dataset_from_files() (in module neural-
monkey.dataset.helpers), 38

load_runtime_config() (in module neuralmonkey.run),
108

load_variables() (neuralmonkey.experiment.Experiment
method), 104

log() (in module neuralmonkey.logging), 108
log() (neuralmonkey.logging.Logging static method), 107
log_file (neuralmonkey.logging.Logging attribute), 107
log_print() (in module neuralmonkey.logging), 108
log_print() (neuralmonkey.logging.Logging static

method), 107
log_sample() (neuralmonkey.vocabulary.Vocabulary

method), 112
Logging (class in neuralmonkey.logging), 107
logits (neuralmonkey.decoders.autoregressive.DecoderHistories

attribute), 44
logits (neuralmonkey.decoders.ctc_decoder.CTCDecoder

attribute), 49
logits (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

attribute), 56
LogitsExecutable (class in neural-

monkey.runners.logits_runner), 90
LogitsRunner (class in neural-

monkey.runners.logits_runner), 91
logprob_sum (neuralmonkey.decoders.beam_search_decoder.SearchState

attribute), 47
logprobs (neuralmonkey.decoders.sequence_labeler.SequenceLabeler

attribute), 56
loop_continue_criterion() (neural-

monkey.decoders.autoregressive.AutoregressiveDecoder
method), 43

loop_continue_criterion() (neural-
monkey.decoders.beam_search_decoder.BeamSearchDecoder
method), 46

loop_state (neuralmonkey.attention.namedtuples.HierarchicalLoopState
attribute), 29

LoopState (class in neural-
monkey.decoders.autoregressive), 44

loss (neuralmonkey.trainers.generic_trainer.Objective at-
tribute), 99

loss_names (neuralmonkey.runners.base_runner.BaseRunner
attribute), 87

loss_names (neuralmonkey.runners.beamsearch_runner.BeamSearchRunner
attribute), 89

loss_names (neuralmonkey.runners.label_runner.LabelRunner
attribute), 90

loss_names (neuralmonkey.runners.logits_runner.LogitsRunner
attribute), 91

loss_names (neuralmonkey.runners.perplexity_runner.PerplexityRunner
attribute), 92

loss_names (neuralmonkey.runners.plain_runner.PlainRunner

attribute), 93
loss_names (neuralmonkey.runners.regression_runner.RegressionRunner

attribute), 94
loss_names (neuralmonkey.runners.runner.GreedyRunner

attribute), 95
loss_names (neuralmonkey.runners.tensor_runner.TensorRunner

attribute), 97
loss_names (neuralmonkey.runners.word_alignment_runner.WordAlignmentRunner

attribute), 97
loss_with_decoded_ins (neural-

monkey.decoders.classifier.Classifier attribute),
48

loss_with_gt_ins (neural-
monkey.decoders.classifier.Classifier attribute),
48

losses (neuralmonkey.runners.base_runner.ExecutionResult
attribute), 88

M
main() (in module neuralmonkey.run), 108
main() (in module neuralmonkey.train), 111
mask (neuralmonkey.decoders.autoregressive.DecoderHistories

attribute), 44
mask_energies() (in module neural-

monkey.attention.scaled_dot_product), 34
mask_future() (in module neural-

monkey.attention.scaled_dot_product), 34
maxout_output() (in module neural-

monkey.decoders.output_projection), 54
maybe_get_series() (neural-

monkey.dataset.dataset.Dataset method),
37

maybe_get_series() (neural-
monkey.dataset.lazy_dataset.LazyDataset
method), 39

MeanSquaredErrorEvaluator (class in neural-
monkey.evaluators.mse), 86

merge_max_counters() (neural-
monkey.evaluators.bleu.BLEUEvaluator
static method), 84

minimum_reference_length() (neural-
monkey.evaluators.bleu.BLEUEvaluator
static method), 84

mlp_output() (in module neural-
monkey.decoders.output_projection), 54

modality_matrix (neural-
monkey.encoders.transformer.TransformerEncoder
attribute), 81

model (neuralmonkey.experiment.Experiment attribute),
104

modified_ngram_precision() (neural-
monkey.evaluators.bleu.BLEUEvaluator
static method), 84

Index 133

Neural Monkey Documentation, Release 0.1

MultEvalWrapper (class in neural-
monkey.evaluators.multeval), 86

MultiAttention (class in neural-
monkey.attention.combination), 26

MultiHeadAttention (class in neural-
monkey.attention.scaled_dot_product), 29

MultiHeadLoopState (class in neural-
monkey.attention.namedtuples), 29

N
name (neuralmonkey.trainers.generic_trainer.Objective

attribute), 99
nematus_output() (in module neural-

monkey.decoders.output_projection), 55
nematus_projection() (in module neural-

monkey.decoders.encoder_projection), 53
neuralmonkey (module), 21, 115
neuralmonkey.attention (module), 36
neuralmonkey.attention.base_attention (module), 21
neuralmonkey.attention.combination (module), 24
neuralmonkey.attention.coverage (module), 27
neuralmonkey.attention.feed_forward (module), 27
neuralmonkey.attention.namedtuples (module), 28
neuralmonkey.attention.scaled_dot_product (module), 29
neuralmonkey.attention.stateful_context (module), 35
neuralmonkey.checking (module), 102
neuralmonkey.checkpython (module), 103
neuralmonkey.dataset (module), 40
neuralmonkey.dataset.dataset (module), 36
neuralmonkey.dataset.helpers (module), 38
neuralmonkey.dataset.lazy_dataset (module), 39
neuralmonkey.decoders (module), 61
neuralmonkey.decoders.autoregressive (module), 40
neuralmonkey.decoders.beam_search_decoder (module),

44
neuralmonkey.decoders.classifier (module), 48
neuralmonkey.decoders.ctc_decoder (module), 49
neuralmonkey.decoders.decoder (module), 50
neuralmonkey.decoders.encoder_projection (module), 52
neuralmonkey.decoders.output_projection (module), 53
neuralmonkey.decoders.sequence_labeler (module), 56
neuralmonkey.decoders.sequence_regressor (module), 57
neuralmonkey.decoders.transformer (module), 57
neuralmonkey.decoders.word_alignment_decoder (mod-

ule), 60
neuralmonkey.decorators (module), 103
neuralmonkey.encoders (module), 82
neuralmonkey.encoders.attentive (module), 61
neuralmonkey.encoders.cnn_encoder (module), 62
neuralmonkey.encoders.facebook_conv (module), 64
neuralmonkey.encoders.imagenet_encoder (module), 65
neuralmonkey.encoders.numpy_stateful_filler (module),

67
neuralmonkey.encoders.pooling (module), 69

neuralmonkey.encoders.raw_rnn_encoder (module), 70
neuralmonkey.encoders.recurrent (module), 71
neuralmonkey.encoders.sentence_cnn_encoder (module),

75
neuralmonkey.encoders.sequence_cnn_encoder (mod-

ule), 77
neuralmonkey.encoders.transformer (module), 79
neuralmonkey.evaluators.accuracy (module), 82
neuralmonkey.evaluators.average (module), 82
neuralmonkey.evaluators.beer (module), 83
neuralmonkey.evaluators.bleu (module), 83
neuralmonkey.evaluators.chrf (module), 84
neuralmonkey.evaluators.edit_distance (module), 85
neuralmonkey.evaluators.f1_bio (module), 85
neuralmonkey.evaluators.gleu (module), 85
neuralmonkey.evaluators.mse (module), 86
neuralmonkey.evaluators.multeval (module), 86
neuralmonkey.evaluators.ter (module), 87
neuralmonkey.evaluators.wer (module), 87
neuralmonkey.experiment (module), 103
neuralmonkey.functions (module), 104
neuralmonkey.learning_utils (module), 105
neuralmonkey.logging (module), 107
neuralmonkey.run (module), 108
neuralmonkey.runners (module), 98
neuralmonkey.runners.base_runner (module), 87
neuralmonkey.runners.beamsearch_runner (module), 88
neuralmonkey.runners.label_runner (module), 90
neuralmonkey.runners.logits_runner (module), 90
neuralmonkey.runners.perplexity_runner (module), 92
neuralmonkey.runners.plain_runner (module), 92
neuralmonkey.runners.regression_runner (module), 93
neuralmonkey.runners.runner (module), 94
neuralmonkey.runners.tensor_runner (module), 95
neuralmonkey.runners.word_alignment_runner (module),

97
neuralmonkey.tf_manager (module), 108
neuralmonkey.tf_utils (module), 109
neuralmonkey.train (module), 111
neuralmonkey.trainers (module), 102
neuralmonkey.trainers.cross_entropy_trainer (module),

98
neuralmonkey.trainers.generic_trainer (module), 99
neuralmonkey.trainers.rl_trainer (module), 100
neuralmonkey.trainers.self_critical_objective (module),

101
neuralmonkey.vocabulary (module), 111
next_to_execute() (neural-

monkey.runners.base_runner.Executable
method), 87

next_to_execute() (neural-
monkey.runners.beamsearch_runner.BeamSearchExecutable
method), 88

134 Index

Neural Monkey Documentation, Release 0.1

next_to_execute() (neural-
monkey.runners.label_runner.LabelRunExecutable
method), 90

next_to_execute() (neural-
monkey.runners.logits_runner.LogitsExecutable
method), 91

next_to_execute() (neural-
monkey.runners.perplexity_runner.PerplexityExecutable
method), 92

next_to_execute() (neural-
monkey.runners.plain_runner.PlainExecutable
method), 93

next_to_execute() (neural-
monkey.runners.regression_runner.RegressionRunExecutable
method), 93

next_to_execute() (neural-
monkey.runners.runner.GreedyRunExecutable
method), 94

next_to_execute() (neural-
monkey.runners.tensor_runner.TensorExecutable
method), 96

next_to_execute() (neural-
monkey.runners.word_alignment_runner.WordAlignmentRunnerExecutable
method), 97

next_to_execute() (neural-
monkey.trainers.generic_trainer.TrainExecutable
method), 100

ngram_counts() (neural-
monkey.evaluators.bleu.BLEUEvaluator
static method), 84

noam_decay() (in module neuralmonkey.functions), 104
nonlinear_output() (in module neural-

monkey.decoders.output_projection), 55
notice() (in module neuralmonkey.logging), 108
notice() (neuralmonkey.logging.Logging static method),

107

O
Objective (class in neural-

monkey.trainers.generic_trainer), 99
order_embeddings (neural-

monkey.encoders.facebook_conv.SentenceEncoder
attribute), 65

ordered_embedded_inputs (neural-
monkey.encoders.facebook_conv.SentenceEncoder
attribute), 65

output (neuralmonkey.encoders.attentive.AttentiveEncoder
attribute), 61

output (neuralmonkey.encoders.cnn_encoder.CNNEncoder
attribute), 63

output (neuralmonkey.encoders.cnn_encoder.CNNTemporalView
attribute), 63

output (neuralmonkey.encoders.facebook_conv.SentenceEncoder
attribute), 65

output (neuralmonkey.encoders.imagenet_encoder.ImageNet
attribute), 66

output (neuralmonkey.encoders.numpy_stateful_filler.SpatialFiller
attribute), 67

output (neuralmonkey.encoders.numpy_stateful_filler.StatefulFiller
attribute), 68

output (neuralmonkey.encoders.pooling.SequenceAveragePooling
attribute), 69

output (neuralmonkey.encoders.pooling.SequenceMaxPooling
attribute), 69

output (neuralmonkey.encoders.raw_rnn_encoder.RawRNNEncoder
attribute), 70

output (neuralmonkey.encoders.recurrent.RecurrentEncoder
attribute), 74

output (neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 77

output (neuralmonkey.encoders.sequence_cnn_encoder.SequenceCNNEncoder
attribute), 79

output (neuralmonkey.encoders.transformer.TransformerEncoder
attribute), 81

output_dimension (neural-
monkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

output_dimension (neural-
monkey.decoders.decoder.Decoder attribute),
52

output_dimension (neural-
monkey.decoders.transformer.TransformerDecoder
attribute), 59

outputs (neuralmonkey.decoders.autoregressive.DecoderHistories
attribute), 44

outputs (neuralmonkey.runners.base_runner.ExecutionResult
attribute), 88

P
partial_transpose() (in module neuralmonkey.tf_utils),

111
PerplexityExecutable (class in neural-

monkey.runners.perplexity_runner), 92
PerplexityRunner (class in neural-

monkey.runners.perplexity_runner), 92
piecewise_function() (in module neural-

monkey.functions), 105
plain_convolution() (in module neural-

monkey.encoders.cnn_encoder), 63
PlainExecutable (class in neural-

monkey.runners.plain_runner), 92
PlainRunner (class in neural-

monkey.runners.plain_runner), 93
pooling() (in module neural-

monkey.encoders.cnn_encoder), 64
position_signal() (in module neural-

monkey.encoders.transformer), 82

Index 135

Neural Monkey Documentation, Release 0.1

predictions (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 57

prepare_results() (neural-
monkey.runners.beamsearch_runner.BeamSearchExecutable
method), 88

prev_contexts (neuralmonkey.decoders.decoder.RNNFeedables
attribute), 52

prev_logits (neuralmonkey.decoders.autoregressive.DecoderFeedables
attribute), 43

prev_logprobs (neuralmonkey.decoders.beam_search_decoder.SearchState
attribute), 47

prev_rnn_output (neural-
monkey.decoders.decoder.RNNFeedables
attribute), 52

prev_rnn_state (neural-
monkey.decoders.decoder.RNNFeedables
attribute), 52

print_final_evaluation() (in module neural-
monkey.learning_utils), 105

print_header() (neuralmonkey.logging.Logging static
method), 108

projection_bias_vector (neural-
monkey.attention.feed_forward.Attention
attribute), 28

Q
query_projection_matrix (neural-

monkey.attention.feed_forward.Attention
attribute), 28

R
ratio() (neuralmonkey.evaluators.edit_distance.EditDistanceEvaluator

static method), 85
RawRNNEncoder (class in neural-

monkey.encoders.raw_rnn_encoder), 70
RecurrentEncoder (class in neural-

monkey.encoders.recurrent), 73
reduce_execution_results() (in module neural-

monkey.runners.base_runner), 88
ref_alignment (neuralmonkey.decoders.word_alignment_decoder.WordAlignmentDecoder

attribute), 60
RegressionRunExecutable (class in neural-

monkey.runners.regression_runner), 93
RegressionRunner (class in neural-

monkey.runners.regression_runner), 94
reinforce_score() (in module neural-

monkey.trainers.self_critical_objective),
101

RepresentationRunner (class in neural-
monkey.runners.tensor_runner), 95

residual_block() (in module neural-
monkey.encoders.cnn_encoder), 64

restore() (neuralmonkey.tf_manager.TensorFlowManager
method), 109

restore_best_vars() (neural-
monkey.tf_manager.TensorFlowManager
method), 109

rl_objective() (in module neural-
monkey.trainers.rl_trainer), 100

rnn (neuralmonkey.encoders.recurrent.DeepSentenceEncoder
attribute), 72

rnn (neuralmonkey.encoders.recurrent.RecurrentEncoder
attribute), 74

rnn_cells() (neuralmonkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
method), 77

rnn_input (neuralmonkey.encoders.recurrent.RecurrentEncoder
attribute), 74

rnn_layer() (in module neural-
monkey.encoders.recurrent), 75

RNNFeedables (class in neural-
monkey.decoders.decoder), 52

RNNHistories (class in neuralmonkey.decoders.decoder),
52

RNNSpec (class in neuralmonkey.encoders.recurrent), 73
run_model() (neuralmonkey.experiment.Experiment

method), 104
run_on_dataset() (in module neural-

monkey.learning_utils), 105
runtime_logits (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder

attribute), 43
runtime_logprobs (neural-

monkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

runtime_logprobs (neural-
monkey.decoders.classifier.Classifier attribute),
49

runtime_loop_result (neural-
monkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

runtime_loss (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

runtime_loss (neuralmonkey.decoders.classifier.Classifier
attribute), 49

runtime_loss (neuralmonkey.decoders.ctc_decoder.CTCDecoder
attribute), 49

runtime_loss (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
attribute), 56

runtime_loss (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 57

runtime_mask (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

runtime_output_states (neural-
monkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

runtime_xents (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

136 Index

Neural Monkey Documentation, Release 0.1

S
save() (neuralmonkey.tf_manager.TensorFlowManager

method), 109
save_git_info() (in module neuralmonkey.experiment),

104
save_wordlist() (neuralmonkey.vocabulary.Vocabulary

method), 112
scalar_summaries (neural-

monkey.runners.base_runner.ExecutionResult
attribute), 88

ScaledDotProdAttention (class in neural-
monkey.attention.scaled_dot_product), 31

scope (neuralmonkey.encoders.imagenet_encoder.ImageNetSpec
attribute), 66

scores (neuralmonkey.decoders.beam_search_decoder.SearchResults
attribute), 47

search_results (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder
attribute), 46

search_results (neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState
attribute), 46

search_state (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder
attribute), 46

search_state (neuralmonkey.decoders.beam_search_decoder.BeamSearchLoopState
attribute), 46

SearchResults (class in neural-
monkey.decoders.beam_search_decoder),
47

SearchState (class in neural-
monkey.decoders.beam_search_decoder),
47

self_attention_sublayer() (neural-
monkey.decoders.transformer.TransformerDecoder
method), 59

self_attention_sublayer() (neural-
monkey.encoders.transformer.TransformerEncoder
method), 81

self_critical_objective() (in module neural-
monkey.trainers.self_critical_objective),
101

sentence_bleu() (in module neural-
monkey.trainers.self_critical_objective),
102

sentence_gleu() (in module neural-
monkey.trainers.self_critical_objective),
102

SentenceCNNEncoder (class in neural-
monkey.encoders.sentence_cnn_encoder),
75

SentenceEncoder (class in neural-
monkey.encoders.facebook_conv), 64

SentenceEncoder (class in neural-
monkey.encoders.recurrent), 74

sentences_to_tensor() (neural-
monkey.vocabulary.Vocabulary method),

113
SequenceAveragePooling (class in neural-

monkey.encoders.pooling), 69
SequenceCNNEncoder (class in neural-

monkey.encoders.sequence_cnn_encoder),
77

SequenceLabeler (class in neural-
monkey.decoders.sequence_labeler), 56

SequenceMaxPooling (class in neural-
monkey.encoders.pooling), 69

SequencePooling (class in neural-
monkey.encoders.pooling), 69

SequenceRegressor (class in neural-
monkey.decoders.sequence_regressor), 57

serialize_to_bytes() (neural-
monkey.evaluators.beer.BeerWrapper method),
83

serialize_to_bytes() (neural-
monkey.evaluators.multeval.MultEvalWrapper
method), 86

series_ids (neuralmonkey.dataset.dataset.Dataset at-
tribute), 37

series_ids (neuralmonkey.dataset.lazy_dataset.LazyDataset
attribute), 40

sessions (neuralmonkey.tf_manager.TensorFlowManager
attribute), 108

set_log_file() (neuralmonkey.logging.Logging static
method), 108

shuffle() (neuralmonkey.dataset.dataset.Dataset method),
37

shuffle() (neuralmonkey.dataset.lazy_dataset.LazyDataset
method), 40

similarity_bias_vector (neural-
monkey.attention.feed_forward.Attention
attribute), 28

size (neuralmonkey.encoders.recurrent.RNNSpec at-
tribute), 73

spatial_mask (neuralmonkey.encoders.cnn_encoder.CNNEncoder
attribute), 63

spatial_mask (neuralmonkey.encoders.imagenet_encoder.ImageNet
attribute), 66

spatial_mask (neuralmonkey.encoders.numpy_stateful_filler.SpatialFiller
attribute), 68

spatial_states (neuralmonkey.encoders.cnn_encoder.CNNEncoder
attribute), 63

spatial_states (neuralmonkey.encoders.imagenet_encoder.ImageNet
attribute), 66

spatial_states (neuralmonkey.encoders.numpy_stateful_filler.SpatialFiller
attribute), 68

SpatialFiller (class in neural-
monkey.encoders.numpy_stateful_filler),
67

split_for_heads() (in module neural-
monkey.attention.scaled_dot_product), 35

Index 137

Neural Monkey Documentation, Release 0.1

state_size (neuralmonkey.attention.feed_forward.Attention
attribute), 28

state_size (neuralmonkey.attention.stateful_context.StatefulContext
attribute), 36

StatefulContext (class in neural-
monkey.attention.stateful_context), 35

StatefulFiller (class in neural-
monkey.encoders.numpy_stateful_filler),
68

step (neuralmonkey.decoders.autoregressive.DecoderFeedables
attribute), 43

strict_mode (neuralmonkey.logging.Logging attribute),
108

subset() (neuralmonkey.dataset.dataset.Dataset method),
37

subset() (neuralmonkey.dataset.lazy_dataset.LazyDataset
method), 40

T
target_modality_embedding (neural-

monkey.encoders.transformer.TransformerEncoder
attribute), 81

temporal_mask (neural-
monkey.encoders.attentive.AttentiveEncoder
attribute), 61

temporal_mask (neural-
monkey.encoders.cnn_encoder.CNNTemporalView
attribute), 63

temporal_mask (neural-
monkey.encoders.facebook_conv.SentenceEncoder
attribute), 65

temporal_mask (neural-
monkey.encoders.raw_rnn_encoder.RawRNNEncoder
attribute), 70

temporal_mask (neural-
monkey.encoders.recurrent.RecurrentEncoder
attribute), 74

temporal_mask (neural-
monkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 77

temporal_mask (neural-
monkey.encoders.transformer.TransformerEncoder
attribute), 81

temporal_mask (neural-
monkey.encoders.transformer.TransformerLayer
attribute), 82

temporal_states (neural-
monkey.encoders.attentive.AttentiveEncoder
attribute), 61

temporal_states (neural-
monkey.encoders.cnn_encoder.CNNTemporalView
attribute), 63

temporal_states (neural-
monkey.encoders.facebook_conv.SentenceEncoder

attribute), 65
temporal_states (neural-

monkey.encoders.raw_rnn_encoder.RawRNNEncoder
attribute), 71

temporal_states (neural-
monkey.encoders.recurrent.RecurrentEncoder
attribute), 74

temporal_states (neural-
monkey.encoders.sentence_cnn_encoder.SentenceCNNEncoder
attribute), 77

temporal_states (neural-
monkey.encoders.transformer.TransformerEncoder
attribute), 81

temporal_states (neural-
monkey.encoders.transformer.TransformerLayer
attribute), 82

tensor() (in module neuralmonkey.decorators), 103
TensorExecutable (class in neural-

monkey.runners.tensor_runner), 95
TensorFlowManager (class in neuralmonkey.tf_manager),

108
TensorRunner (class in neural-

monkey.runners.tensor_runner), 96
TEREvaluator (class in neuralmonkey.evaluators.ter), 87
tf_print() (in module neuralmonkey.tf_utils), 111
token_ids (neuralmonkey.decoders.beam_search_decoder.SearchResults

attribute), 47
total_precision_recall() (neural-

monkey.evaluators.gleu.GLEUEvaluator
static method), 86

train() (neuralmonkey.experiment.Experiment method),
104

train_inputs (neuralmonkey.decoders.autoregressive.DecoderConstants
attribute), 43

train_logits (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

train_logits (neuralmonkey.decoders.transformer.TransformerDecoder
attribute), 59

train_logprobs (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

train_loop_result (neural-
monkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

train_loss (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

train_loss (neuralmonkey.decoders.classifier.Classifier at-
tribute), 49

train_loss (neuralmonkey.decoders.ctc_decoder.CTCDecoder
attribute), 49

train_loss (neuralmonkey.decoders.sequence_labeler.SequenceLabeler
attribute), 56

train_loss (neuralmonkey.decoders.sequence_regressor.SequenceRegressor
attribute), 57

train_output_states (neural-

138 Index

Neural Monkey Documentation, Release 0.1

monkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

train_xents (neuralmonkey.decoders.autoregressive.AutoregressiveDecoder
attribute), 43

TrainExecutable (class in neural-
monkey.trainers.generic_trainer), 99

training_loop() (in module neuralmonkey.learning_utils),
106

TransformerDecoder (class in neural-
monkey.decoders.transformer), 58

TransformerEncoder (class in neural-
monkey.encoders.transformer), 79

TransformerHistories (class in neural-
monkey.decoders.transformer), 59

TransformerLayer (class in neural-
monkey.encoders.transformer), 81

truncate() (neuralmonkey.vocabulary.Vocabulary
method), 113

truncate_by_min_freq() (neural-
monkey.vocabulary.Vocabulary method),
113

U
update_initializers() (in module neuralmonkey.tf_utils),

111
update_initializers() (neural-

monkey.experiment.Experiment method),
104

V
validation_hook() (neural-

monkey.tf_manager.TensorFlowManager
method), 109

vectors_to_sentences() (neural-
monkey.vocabulary.Vocabulary method),
113

visualize_attention() (neural-
monkey.attention.base_attention.BaseAttention
method), 23

visualize_attention() (neural-
monkey.attention.scaled_dot_product.MultiHeadAttention
method), 31

visualize_attention() (neural-
monkey.attention.stateful_context.StatefulContext
method), 36

visualize_embeddings() (in module neural-
monkey.experiment), 104

Vocabulary (class in neuralmonkey.vocabulary), 111
vocabulary (neuralmonkey.decoders.beam_search_decoder.BeamSearchDecoder

attribute), 46

W
warn() (in module neuralmonkey.logging), 108

warn() (neuralmonkey.logging.Logging static method),
108

weight (neuralmonkey.trainers.generic_trainer.Objective
attribute), 99

weights (neuralmonkey.attention.namedtuples.AttentionLoopState
attribute), 28

WEREvaluator (class in neuralmonkey.evaluators.wer),
87

WordAlignmentDecoder (class in neural-
monkey.decoders.word_alignment_decoder),
60

WordAlignmentRunner (class in neural-
monkey.runners.word_alignment_runner),
97

WordAlignmentRunnerExecutable (class in neural-
monkey.runners.word_alignment_runner),
97

X
xent_objective() (in module neural-

monkey.trainers.cross_entropy_trainer), 98

Index 139

	Getting Started
	Python Module Index

